北京大学医学部 复旦大学医学院 浙江大学医学院 中国医科大学 武汉大学医学院 重庆医科大学 首都医科大学 河北医科大学 山东大学医学院 查看110所医学院校
全国|北京|天津|河北|山西|湖北|江苏|安徽|山东|上海|浙江|江西|福建|湖南|吉林|广东|河南|四川|重庆|辽宁
更多>>
您现在的位置: 医学全在线 > 医学考研 > 西医综合 > 西医复习 > 正文:微生物学笔记(武汉大学-沈萍版)
    

微生物学笔记(武汉大学-沈萍版)

更新时间:2006/7/17 医学考研论坛 在线题库 评论


普遍性转导中外源DNA的三种后果
1)进入受体的外源DNA通过与细胞染色体的重组交换而形成稳定的转导子.
2) 如果转导DNA不能进行重组和复制,其上的基因仅经过转录而得到表达,就成为流产转导(abortive transduction),其特点是在选择培养基平板上形成微小菌落。DNA不能复制,因此群体中仅一个细胞含有DNA,而其它细胞只能得到其基因产物,形成微小菌落。
3) 3)被降解, 转导失败,在选择平板上无菌落形成。
2.局限性转导(specialized transduction)
温和噬菌体感染受体菌后,其染色体会整合到细菌染色体的特定位点上,从而使宿主细胞发生溶源化,例如λ噬菌体,其插入位点的二侧分别是gal和bio基因;
如果该溶源菌因诱导而发生裂解时,在前噬菌体二侧的少数宿主基因,(对λ噬菌体分别是gal和bio基因),会因偶尔发生的不正常切割而连在噬菌体DNA上,由此产生了一类特殊的噬菌体----缺陷噬菌体,
缺陷噬菌体除含大部分自身的DNA外,缺失的基因被几个位于前噬菌体整合位点附近的宿主基因取代,这样形成的杂合DNA分子在宿主细胞内能够象正常的λDNA分子一样进行复制、包装,提供所需要的裂解功能,形成转导颗粒。
但该缺陷噬菌体没有正常噬菌体的溶源性和增殖能力,感染受体细胞后,通过DNA整合进宿主染色体而形成稳定的转导子。
局限性转导与普遍性转导的主要区别:
1) 被转导的基因共价地与噬菌体DNA连接,与噬菌体DNA一起进行复制、包装以及被导入受体细胞中。而完全转导包装的可能全部是宿主菌的基因;
2) 局限性转导颗粒携带特定的染色体片段并将固定的个别基因导入受体,故称为局限性转导。
溶源转变与转导的不同:
1. 温和噬菌体不携带任何供体菌的基因,当宿主丧失这一噬菌体时,通过溶源转变而获得的形状也同时消失
2. 这种噬菌体是完整的,而不是缺陷的;
枯草芽孢杆菌的自然转化模型:
a) 细菌生长在一定的培养条件下生长到一定阶段,以枯草芽孢杆菌为例是在葡萄糖基本培养基中培养到对数生长末期到稳定期,细胞向胞外分泌一种小分子的蛋白质,称为感受态因子,其分子量为5000到10000道尔顿。
b) 当培养液中的感受态因子积累到一定浓度后,与细胞表面受体相互作用,通过一系列信号传递系统诱导一些感受态一特异蛋白质(competence specific protein)表达,其中一种是自溶素(autolysin),它的表达使细胞表面的DNA结合蛋白及核酸酶裸露出来,使其具有与DNA结合的活性。 c) DNA以双链形式在细胞表面的几个位点上结合并遭到核酸酶的切割,核酸内切酶首先切断DNA双链中的一条链,被切断的链遭到核酸酶降解,成为寡核苷酸释放到培养基中,另一条链与感受态一特异蛋白质结合,并被引导进入细胞,
d) 进入细胞的外源DNA通过同源重组以置换的方式整合进受体染色体DNA,经复制和细胞分裂后形成重组体。
枯草芽孢杆菌的自然转化的特点:
1) 枯草芽孢杆菌等革兰氏阳性菌细胞对双链DNA的吸附和摄取是没有特异性的,转化是否成功及转化效率的高低主要取决于转化给体菌株和转化受体菌株之间的亲源关系,关系越近,则DNA之间的同源性也越高,就越容易在DNA之间发生重组,产生转化子。
2) 自然感受态除了对线型染色体DNA分子的摄取外,也能摄取质粒DNA,但在通常情况下质粒的自然转化效率要低得多,这是因为质粒作为细菌染色体外独立存在的遗传物质和染色体DNA同源性很差(否则会因为和染色体DNA之间的重组而不稳定),这样被切割成单链后进入细胞的质粒DNA将很难通过重组重新恢复成有活性的状态(双链闭合环状),或通过整合进染色体而使相关性状得到表达;如要提高质粒的自然转化效率,可以用二种方法:i)使质粒形成多聚体,这样进入细胞后重新组合成有活性的质粒的几率大大提高;ii)在质粒上插入受体菌染色体的部分片段,或将质粒转化进含有与该质粒具有同源区段的质粒的受体菌-------重组获救。
3) 噬菌体DNA也可被感受态细胞摄取并产生有活性的病毒颗粒,这个过程被称为转染(transfection),其特点是提纯的噬菌体DNA以转化的(而非病毒感染)途径进入细胞并表达后产生完整的病毒颗粒。
现在把DNA转移至动物细胞的过程也称转染。
主要有如下几个因素会对微生物菌种的稳定性造成影响:
1. 变异:即通过变异而失去重要的遗传特性,例如发酵生产能力下降,或研究中所需要的营养缺陷型由于回复突变等而改变
2. 污染:由于微生物在自然界中种类多,分布广,空气、桌面、皮肤表面都有大量的各种微生物存在,因此在进行微生物菌种操作(包括接种、培养等)时非常容易污染,从而造成菌种的丢失。
3. 死亡:微生物容易在实验室里用人工配制的各种培养基培养,但如果超过时间不转接菌种,由于疏忽培养条件发生改变,及其它各种以外情况(如冰箱停电)都容易造成菌种的死亡。而且这种损失有时是不可挽回的。
菌种保藏:在一定时间内使菌种不死、不变、不乱
第九章
目前常用的三种体外DNA连接方法为:
① 用T4或E.coli DNA连接酶可连接具有互补粘性末端的DNA片段;
② 用T4 DNA连接酶连接具有平末端的DNA片段;
③ 先在DNA片段末端加上人工接头,使其形成粘性末端,然后再行连接。
④ 将粘性末端补平或修平(用单链酶,如绿豆芽核酸酶)连接
柯斯质粒用于克隆大片段的DNA分子特别有效,而这种特性对于研究高等生物的基因组十分重要。其特点:
1)具有λ噬菌体的特性:在克隆了外源片段后可在体外被包装成噬菌体颗粒,高效地感染对λ噬菌体敏感的大肠杆菌细胞。进入寄主的柯斯质粒DNA分子,按照λ噬菌体DNA的方式环化, 但无法按噬菌体的方式生活,更无法形成子代噬菌体颗粒。
2)具有质粒载体的特性:在寄主细胞内如质粒一样进行复制,携带有抗性基因和克隆位点,并具氯霉素扩增效应。
3)具有高容量的克隆能力:柯斯质粒本身一般只有5~7kb左右,而它克隆外源DNA片段的极限值竟高达45kb,远远超过质粒载体及λ噬菌体载体的克隆能力。同时,由于包装限制,柯斯质 粒载体的克隆能力还存在一个最低极限值。例如, 5 kb大小的 柯斯质粒载体,插入的外源片段至少不能小于30 kb。
M13是大肠杆菌丝状噬菌体,其基因组为环状ssDNA,大小为6407bp。其生活史为:
1)通过性毛感染雄性(F+或Hfr)大肠杆菌,或通过转染进入雌性大肠杆菌细胞;
2)进入细胞后,转变成复制型 (RF) dsDNA,然后以滚环方式制出ssDNA。每当复制出单位长度正链,即被切出和环化,并被立即组装成子代噬菌体和以出芽方式(即宿主细胞不被裂解)被释放至胞外。
M13克隆载体是对野生型M13进行改造后建成,其特点是虽然克隆外源DNA的能力较小,一般只适于克隆300~400bp的外源DNA片段,但特别适合用于制备克隆基因的单链DNA。主要被用于制备测序用单链DNA模板、特异的单链DNA探针,进行定位诱变等,也可用于噬菌体展示(phage display
第十章  微生物的生态
有关基本概念:
生态系统:在一定的空间内生物的成分和非生物的成分通过物质循环和能量流动互相作用、互相依存而构成的一个生态学功能单位。
生态学:研究生物与其周围生物和非生物环境之间相互关系
微生物生态学:研究微生物与其周围生物和非生物环境之间相互关系
第一节    自然界中的微生物
一、空气中的微生物
分布特点:1.无原生的微生物区系2.来源于土壤、水体及人类的生产、生活活动,
3.种类主要为真菌和细菌,一般与其所在环境的微生物种类有关4.数量取决于尘埃数量
5.在空气中的停留时间和尘埃大小、空气流速、湿度、光照等因素有关6. 与人类生活关系密切
二、 水体中的微生物
一) 江河水    特点:
1) 数量和种类与接触的土壤有密切关系; 2)分布上更多的是吸附在悬浮在水中的有机物上及水底;3) 淡水中的微生物是可以运动的,而且某些淡水中的细菌例如柄细菌具有很异常的形态,这些异常形态使得菌体的表面积与体积之比增加,从而使这些微生物能有效地吸收有限的营养物;4)靠近城市或城市下游水中的微生物多,并且有很多对健康不利的细菌,因此不宜作为饮用水源;5)水体自身存在自我净化作用:
(二)海水
1)嗜盐,真正的海洋细菌在缺少氯化钠的情况下是不能生长的。
2)低温生长,除了在热带海水表面外,在其它海水中发现的细菌多为嗜冷菌。
3 )耐高压(特别是生活在深海的细菌),少数微生物甚至可在600个大气压下生长,
4) 大多数海洋细菌为G—细菌,并具有运动能力;
(三)水体的富营养化作用和“水花”、“赤潮”
当水体接受了大量的有机物或无机物,特别是磷酸盐和无机氮化合物,引起水的富营养化。由于水中含有过多的含氮、磷等的营养物质,引起藻类过量生长,产生大量的有机物(藻类)异养微生物氧化这些有机物,耗尽水中的氧,使厌氧菌开始大量生长和代谢,并分解含硫化合物,产生H2S,从而导致水有难闻的气味,并由于缺氧引起鱼和好氧微生物的死亡,最终引起水出现大量沉淀物和水体颜色异常。上述过程又称富营养化作用,它是水体受到污染并使水体自身的正常生态失去平衡的结果。在水体的富营养化作用中,藻类、蓝细菌等的大量繁殖使水体出现颜色,并变得浑浊,许多藻类团块漂浮在水面上,从而形成所谓的“水花”或“水华”(water bloom)在海洋中,某些甲藻类大量繁殖也可也可以形成水花,从而使海水出现红色或褐色,即所谓的赤潮或红潮(red tides)。
三、土壤中的微生物
1)土壤微生物的数量和分布主要受到营养物、含水量、氧、温度、pH等因子的影响,并随土壤类型的不同而有很大变化。
2)土壤微生物的数量和分布受季节影响;
3)微生物的数量也与于土层的深度有关,一般土壤表层微生物最多,随着土层的加深,微生物的数量逐步减少。www.lindalemus.com
四、工农业产品上的微生物
1.微生物引起的工业产品的霉腐2.食品、农副产品上的微生物
五、极端环境下的微生物
极端环境下微生物的研究有三个方面的重要意义:(1)开发利用新的微生物资源,包括特异性的基因资源;(2)为微生物生理、遗传和分类乃至生命科学及相关学科许多领域,如:功能基因组学、生物电子器材等的研究提供新的课题和材料;(3)为生物进化、生命起源的研究提供新的材料。
1、嗜热微生物2、嗜冷微生物3、嗜酸微生物4、嗜碱微生物5、嗜盐微生物6、嗜压微生物
六、不可培养的微生物
在自然界中存在的微生物中,已为人们所认识的仅占很小一部分(通常认为仅10%,有人认为在土壤中生活的微生物仅有1%可用目前的方法在实验室进行培养),其中的原因就在于在在自然界中存在的大多数微生物在目前的条件下不能在实验室进行人工培养,不可能得到其纯培养并对其进行形态及生理、遗传等特性进行研究。CARL WOESE在1977就提出的用rRNA(原核的16s和真核的18s)揭示生物的系统发育的方法为我们研究并开发不可培养微生物提供了可能。其方法通常是用各种特定的引物(例如所有真细菌(eubacteria)的保守16s rRNA区段或某种微生物的特异DNA或16s rRNA保守序列等)进行PCR从各种生态环境中克隆16s rRNA,并对其进行序列分析和同源性分析,发现和开发不可培养微生物。
第二节    微生物与生物环境间的相互关系
自然环境中的微生物一般都不是单独存在的,存在个体、种群、群落和生态系统从低到高的组织层次
群体(population):具有相似特性和生活在一定空间内的同种个体群,是组成群落的基本组分。
群落(community):在一定区域或一定生态环境内,各种生物群体构成的一个生态学结构单位,群落中各生物群体之间存在各种相互作用。
生态系统(ecosystems):生物群落和它们所生活的非生物环境结合起来的一个整体。生态系统是生物圈的组成单元,生物圈内的任何一个相对完整的自然整体都可以被看作为生态系统,如一个池塘,一片森林,一个污水处理池,等等。
生物圈(biosphere):地球上所有生物及其所生活的非生命环境的总称。
一般来说,在生态系统中生物之间的相互关系归纳起来有如下三种:
1. 有利关系:一种生物的生长和代谢对另一种生物的生长产生有利的影响,或相互有利;
2. 有害关系:一种生物的生长对另一种生物的生长产生有害的影响,或相互有害;
3.  中性关系:二种生物生活在一起时,彼此对对方的生长代谢无明显的有利或有害影响。
微生物间及微生物与其它生物间最常见的几种相互关系
一、互生
二种可以单独生活的生物,当它们生活在一起时,通过各自的代谢活动而有利于对方,或偏利于一方的一种生活方式。因此,这是一种“可分可合,合比分好”的相互关系
(一)  微生物间的互生关系  在自然界中,微生物间的互生关系非常普遍,也很重要。
(二)  人体肠道正常菌群  人体肠道正常菌群与宿主间的关系,主要是互生关系,但在某些特殊条件下,也会转化为寄生关系。
二、 共生
二种生物共居在一起,相互分工协作、相依为命,甚至形成在生理上表现出一定的分工,在组织和形态上产生了新的结构的特殊的共生体。
共生一般有二种情况:互惠共生(二者均得利)和偏利共生(一方得利,但另一方并不受害)
(一)  微生物间的共生关系
例如地衣  地衣是微生物间典型的互惠共生形式,它是藻类和真菌的共生体,
结构上的共生:          生理上的共生:这种共生关系具有重要的生态学意义,对土壤形成具有重要作用。
(二)  微生物和植物间的共生关系
根瘤菌与豆科植物间的共生关系就是典型的例子------形成根瘤共生体。根瘤菌固定大气中的气态氮为植物提供氮素养料,而豆科植物的根的分泌物能刺激根瘤菌的生长,同时,还为根瘤菌提供保护和稳定的生长条件。
(三)  微生物与动物的共生关系
1. 与昆虫的共生关系1)外共生:2)内共生:     2.与反刍动物的共生关系
反刍动物,如牛、羊、骆驼、长颈鹿等以植物的纤维素为主要食物,它们在瘤胃中经微生物发酵变成有机酸和菌体蛋白再供动物吸收利用。与此同时,瘤胃也为里面居住的微生物提供了必要的营养和生长条件
三、 寄生   所谓寄生,一般指一种小型生物生活在另一种相对较大型生物的体内或体表,从中取得营养和进行生长繁殖,同时使后者蒙受损害甚至被杀死的现象。  前者称为寄生物(parasite),后者称为寄主或宿主(host)
(一)  微生物间的寄生   1.噬菌体—细菌;  2.蛭弧菌—细菌;  3.真菌—真菌;  4.真菌、细菌—原生动物;
(二) 微生物与动植物
各种各样的致病菌多是行寄生生活
择生生物,现一般称为悉生生物或定菌生物(Gnotobiote)指整个个体不携带或只携带已知微生物的生物。与通常携带众多种类微生物且数量很多的普通生物相比,用它做实验研究有很多优点:干扰因素少,操作易控制,既可进行定性分析,也可进行定量分析,实验结果准确、可靠,对于了解微生物与宿主之间复杂的关系及其机理具有十分重要的作用。
四、拮抗  所谓拮抗,系指某种生物产生的代谢产物可抑制它种生物的生长发育甚至将后者杀死。
在一般情况下,拮抗多是指微生物间的“化学战术”,最典型的就是抗生菌所产生的能抑制其它生物生长发育的抗生素;
此外,有时因某种微生物的生长而引起的其它条件的改变(例如缺氧、pH改变等),从而抑制它种生物的现象也称拮抗。
五、竞争  竞争:两个种群因需要相同的生长基质或其它环境因子,致使增长率和种群密度受到限制时发生的相互作用,其结果对两种种群都是不利的。
六、捕食  捕食:一种种群被另一种种群完全吞食,捕食者种群从被食者种群得到营养,而对被食者种群产生不利影响。
对微生物来说,一般有如下几种情况:
1.原生动物吞食细菌和藻类;   2.粘细菌吞食细菌和其它微生物;    3.真菌捕食线虫和其它原生动物;
第三节 微生物在生态系统中的作用
生态系统是生物群落和它们所生活的非生物环境结合起来的一个整体
特点:在一定的空间内,生物的成分和非生物的成分通过物质循环和能量流动互相作用、互相依存而构成的一个生态学功能单位。
生物成分按其在生态系统中的作用,可划分为三大类群:生产者(从无机物合成有机物,例如植物、某些微生物)、消费者(利用有机物进行生活,一般不能将有机物直接分解成有机物,例如动物、某些微生物)和分解者(分解有机物成无机物,形成完整的物质循环)。微生物可以在多个方面但主要作为分解者而在生态系统中起重要作用。
        第十一章
病原微生物(Pathogenic microorganism):寄生于生物(包括人)机体并引起疾病的微生物。又称病原体(pathogen)。
感染(infection),又称传染:机体与病原体在一定条件下相互作用而引起的病理过程。
病原体、宿主和环境是决定传染结局的三个因素
感染的建立,首先需有病原体的接触。它们具有侵袭宿主机体,在其中生长繁殖和产生毒性物质等能力。
感染不是疾病的同义词,
大多数的感染为亚临床的、不明显的、不产生任何显著的症状与体征。
有些病原体在最初感染后,潜伏影响可持续多年。病原体亦可与宿主建立起共生关系。
传染病:由有生命力的病原体引起的疾病,与由其它致病因素引起的疾病在本质上是有区别的。
传染病的基本特征是有病原体,有传染性,有流行性、地方性和季节性,有免疫性。
免疫(immunity):生物体能够辩认自我与非自我,对非我做出反应以保持自身稳定的功能,
传统的免疫概念是机体抵抗病原微生物的能力,即抗传染免疫。随着科学的发展,免疫的的现代概念已大大超出了抗传染免疫的范围。实际上,机体除了对微生物的刺激,能发生免疫反应外,对一切抗原异物甚至改变了的自身成分也能发生反应,并且反应的结果可能是对身体有利的,也可能是有害的。
免疫功能的分类:
类别
功能正常 功能异常 免疫防御
抵御病原体的侵害和中和其毒素(抗传染免疫)
变态反应、反复感染或免疫缺陷综合症
免疫稳定
清除体内自然衰老或损伤的细胞,进行免疫调节,以维护机体内环境的相对稳定性
识别紊乱,导致自身免疫病的发生
免疫监视
某些免疫细胞发现并清除突变的自身细胞(癌细胞)
功能失调时,导致癌变或持续感染的发生
一、感染的途径与方式
1. 感染的途径
外源性感染:来源于宿主体外的感染称为外源性感染,主要来自病人、健康带菌(毒)者和带菌(毒)动、植物。
内源性感染:而当滥用抗生素导致菌群失调或某些因素致使机体免疫功能下降时,宿主体内的正常菌群可引起感染称内源性感染。
2. 感染的部位及方式
二、微生物的致病性
1. 细菌的致病性:细菌的致病性是对特定宿主而言,能使宿主致病的为致病菌,反之为非致病菌,但二者并无绝然界限。有些细菌在一般情况下不致病,但在某些条件改变的特殊情况下亦可致病,称为条件致病菌(opportunistic pathogen)或机会致病菌。病原菌致病力的强弱称为毒力,其侵袭力和毒素是构成毒力的基础。
2. 1)侵袭力(invasiveness):病原菌突破宿主防线,并能于宿主体内定居、繁殖、扩散的能力,称为侵袭力。
(1)吸附和侵入能力:细菌通过具有粘附能力的结构如革兰氏阴性菌的菌毛粘附于宿主的呼吸道、消化道及泌尿生殖道粘膜上皮细胞的相应受体,于局部繁殖,积聚毒力或继续侵入机体内部。例如淋病奈瑟氏球菌的菌毛可使其吸附于尿道粘膜上皮的表面而不被尿液冲走;变异链球菌(Streptococcus mutants)能用蔗糖合成葡聚糖,使细菌与牙齿表面粘连成菌班,而其它细菌例如乳杆菌(Lactobacillus)可在菌班上进一步发酵蔗糖产生大量有机酸(pH降低至4.5左右),二者共同作用,导致牙釉质和牙质脱钙,造成龋齿
病原菌宿主细胞表面后,有的不再侵入,仅在原处生长繁殖并引起疾病,如霍乱弧菌(Vibrio),有的侵入细胞内生长繁殖并产生毒素,使细胞死亡,造成溃疡,例如痢疾志贺氏菌(Shigella ddysenteriae),有的则通过粘膜上皮细胞或细胞间质侵入表层下部组织或血液中进一步扩散,例如溶血链球菌(Streptococcus haemolyticus)引起的化脓性感染等。
(2)繁殖与扩散能力:产生、分泌水解性酶类,使组织疏松、通透性增加,有利于病原菌扩散。例如链球菌产生的透明质酸酶(水解机体结缔组织中的透明质酸,从而使该组织疏松、通透性增加,有利于病原菌迅速扩散,引起全身感染)、链激酶、链道酶等可协助细菌扩散。
(3)对宿主防御机能的抵抗能力:a)细菌的荚膜和微荚膜具有抗吞噬和体液杀菌物质的能力,有助于病原菌于在体内存活,例如肺炎球菌的荚膜。b)致病性葡萄球菌产生的血浆凝固酶有抗吞噬作用(加速血浆凝固成纤维蛋白屏障,以保护病原菌免受宿主的吞噬细胞和抗体的作用);c)有些可分泌一些活性物质如溶血素,抑制白细胞的趋化作用;d)有的具抵抗在吞噬细胞内杀被死的能力,能在吞噬细胞内寄生(二者力量平衡时,则细胞内寄生状态可持续存在,若失去平衡,则必有一方受到伤害),等等。
外毒素与内毒素的比较
项目
外毒素 内毒素 产生菌 革兰氏阳性菌为主 革兰氏阴性菌
化学成分 蛋白质 脂多糖(LPS) 释放时间 一般随时分泌菌体死亡裂解后释放
致病特异性 不同外毒素各不相同 不同病原菌的内毒素作用基本相同 毒性 强* 弱 抗原性 完全原,抗原性强 不完全抗原,抗原性弱   制成类毒素 能 不能  热稳定性差 耐热性强
*1mg肉毒毒素纯品可杀死2亿(2000万)只小鼠或一百万只豚鼠,中毒的死亡率几近100%,但及时注射抗毒素及对症治疗可使之降低。1mg伤风毒素可杀死100万只小鼠,1mg白喉毒素可杀死1000只豚鼠。
传染的类型:
1. 隐性传染
如果宿主的免疫力很强,而病原体的毒力相对较弱,数量又较少,传染后只引起宿主的轻微伤害,且很快就将病原体彻底消灭,因而基本上不表现临床症状。
2. 带菌状态
如果病原体与宿主双方都有一定的优势,但病原体仅被限制于某一局部且无法大量繁殖,二者长期处于僵持状态,就称为带菌状态。这种长期处于带菌状态的宿主,称为带菌者。在隐性传染或传染病痊愈后,宿主有可能会成为带菌者,如不注意,就成为该传染病的传染源,十分危险。这种情况在伤寒、白喉等传染病中时有发生。
3. 显性传染
如果宿主的免疫力较低,或入侵病原菌的毒力较强、数量较多,病原菌很快在体内繁殖并产生大量有毒产物,使宿主的细胞和组织蒙受严重损害,生理功能异常,于是就出现了一系列临床症状,这就是显性传染。
按发病时间的长短,可将将显性传染分为急性传染和慢性传染二种。前者的病程仅数日至数周,如流行性脑膜炎和霍乱等;后者的病程往往长达数月至数年,如结核病、麻风病等。
急性传染病一般由对宿主吞噬细胞吞噬敏感的病原体造成,这些病原体在机体内被吞噬细胞吞噬后即被迅速破坏,属于细胞外寄生物,即它们伤害宿主组织仅在吞噬细胞外的时间内。而与此相反,细胞内寄生物能在细胞内存活和繁殖,常引起慢性病。
非特异性免疫:
一、 生理屏障
二、 1.  皮肤与粘膜:
1)机械的阻挡和排除作用:健康机体的外表面覆盖着连续完整的皮肤和粘膜结构,其外面的角质层是坚韧的,不可渗透的,组成了阻挡微生物入侵的有效屏障。
2)分泌液中所含化学物质有局部抗菌作用:汗腺分泌物中的乳酸和皮肤腺分泌物中的长链不饱和脂肪酸均有一定的杀菌抑菌能力。多种分泌性体液含有杀菌的成分,如唾液、泪水、乳汁、鼻涕及痰中的溶菌酶、胃液的胃酸、精液的精胺等。
机体呼吸道、消化道、泌尿生殖道表面由粘膜覆盖,其表面屏障作用较弱,但有多种附件和分泌物。粘膜所分泌的粘液具有化学性屏障作用,并且能与细胞表面的受体竞争病毒的神经氨酸酶而抑制病毒进入细胞。当微生物和其它异物颗粒落入附于粘膜面的粘液中,机体可用机械的方式如纤毛运动、咳嗽和喷嚏而排出,同时还有眼泪、唾液和尿液的清洗作用。
3)共生菌群 人的体表和与外界相通的腔道中存在大量正常菌群,通过在表面部位竞争必要的营养物,或者产生如象大肠杆菌素、酸类、脂类等抑制物,而抑制多数具有疾病潜能的细菌或真菌生长。临床上长期大量应用广谱抗菌素,肠道内对药物敏感的细菌被抑制,破坏了菌群间的拮抗作用,则往往引起菌群失调症,如耐药性金黄色葡萄球菌性肠炎。
2.生理上的屏障结构
体内的某些部位具有特殊的结构而形成阻挡微生物和大分子异物进入的局部屏障,对保护该器官,维持局部生理环境恒定有重要作用。
1)血脑屏障:不是一种专有的解剖结构,主要由软脑膜、脉络丛、脑毛细血管壁及其外的脑星形细胞组成的,具有细胞间连接紧密、胞饮作用弱的特点,可阻挡病原体及其有毒产物从血液透入脑组织或脑脊液,从而保护了中枢神经系统的稳定。婴幼儿因其血脑屏障还未发育完善,故易患脑膜炎或流行性乙型脑炎等传染病。
2)血胎屏障:由怀孕母体子宫内膜的基蜕膜和胎儿的绒毛膜滋养层细胞共同组成,当它发育成熟(一般在妊娠3个月)后,能阻挡病原微生物由母体通过胎盘感染胎儿,但并不妨碍母子间的物质交换。
二、细胞因素
三、体液因素
四、炎症(inflammatory)
免疫应答的基本过程
免疫应答十分复杂,其过程分为感应阶段、反应阶段和效应阶段。
1. 感应阶段
这是机体接受抗原刺激的阶段。巨噬细胞(非特异性免疫的细胞因素)在此阶段起重要作用,抗原进入机体后,一般到达周围淋巴器官,在那里发生免疫应答。除少数可溶性物质可直接作用于淋巴细胞外,大多数抗原都要经过巨噬细胞的处理。经过处理后,抗原决定簇与巨噬细胞的RNA组成复合物,可增强免疫原性。
巨噬细胞将抗原信息传递给T细胞,引起细胞免疫。
大多数引起体液免疫的抗原,也要经巨噬细胞处理后,将抗原信息传递给辅助性T细胞,再传给B细胞,少数抗原可不经巨噬细胞,直接刺激B细胞,由抗原诱导免疫应答,免疫活性细胞表面有抗原受体,所以能够识别抗原。每个淋巴细胞表面只有一种抗原受体,只能识别一种抗原,当它们结合后,抗原刺激细胞增殖、分化而产生免疫应答。
2. 反应阶段
淋巴细胞识别抗原后,即活化进入反应阶段。
在这一阶段中,T细胞转化为淋巴母细胞,再增殖、分化,成为有免疫效应的致敏淋巴细胞。
B细胞被活化后,转化为浆母细胞,再增殖、分化为浆细胞,分泌抗体。
致敏淋巴细胞和浆细胞是终末细胞,不再分化,寿命短,只有几天。
受抗原刺激的淋巴细胞,在分化过程中,还有一部分细胞在中途停顿下来,不再增殖分化,成为记忆细胞,在体内能较长时间存在。当再次受到同种抗原刺激时,能迅速分化增殖成大量致敏淋巴细胞和浆细胞,分别产生大量淋巴因子及抗体。
3. 效应阶段
在免疫应答的效应阶段,抗原成为被打击的对象。抗体和致敏淋巴细胞都可以与抗原结合产生特异性免疫反应。当同种抗原再次侵入机体时,致敏T细胞可直接作用于抗原,同时释放多种淋巴因子消灭抗体,行使细胞免疫功能。抗体也可直接作用于抗原,或与巨噬细胞、补体等协同作用,消灭或破坏抗原,完成体液免疫作用。
第十二章
建立16 S r RNA系统发育树的意义
a)使生物进化的研究范围真正覆盖所有生物类群;
传统的生物进化研究,主要基于复杂的形态学和化石记载,因此多限于研究后生生物(metazoa),而后者仅占整个生物进化历程的1/5
b)提出了一种全新的正确衡量生物间系统发育关系的方法;
c)对探索生命起源及原始生命的发育进程提供了线索和理论依据;
d)突破了细菌分类仅靠形态学和生理生化特性的限制,建立了全新的微生物分类、鉴定理论;
e)为微生物生物多样性和微生物生态学研究建立了全新的研究理论和研究方法,特别是不经培养直接对生态环境中的微生物进行研究。
“Taxonomists' counts suggest that insects dominate the diversity game, but new analyses reveal that microbes are the real winners.”
核酸的碱基组成和分子杂交:
与形态及生理生化特性的比较不同,对DNA的碱基组成的比较和进行核酸分子杂交是直接比较不同微生物之间基因组的差异,因此结果更加可信。
1. DNA的碱基组成(G+Cmol%)
DNA碱基因组成是各种生物一个稳定的特征,即使个别
基因突变,碱基组成也不会发生明显变化。
分类学上,用G+C占全部碱基的克分子百分数(G+Cmol%)来表示各类生物的DNA碱基因组成特征。
1)每个生物种都有特定的GC%范围,因此后者可以作为分类鉴定的指标。细菌的GC%范围为25--75%,变化范围最大,因此更适合于细菌的分类鉴定。
2)GC%测定主要用于对表型特征难区分的细菌作出鉴定,并可检验表型特征分类的合理性, 从分子水平上判断物种的亲缘关系。
3)使用原则:
G+C含量的比较主要用于分类鉴定中的否定每一种生物都有一定的碱基组成,亲缘关系近的生物,它们应该具有相似的G+C含量,若不同生物之间G+C含量差别大表明它们关系远。
但具有相似G+C含量的生物并不一定表明它们之间具有近的亲缘关系。
同一个种内的不同菌株G+C含量差别应在4~5%以下;同属不同种的差别应低于10~15%。所以G+C含量已经作为建立新的微生物分类单元的一项基本特征,它对于种、属甚至科的分类鉴定有重要意义。
若二个在形态及生理生化特性方面及其相似的菌株,如果其G+C含量的差别大于5%,则肯定不是同一个种,大于15%则肯定不是同一个属。
在疑难菌株鉴定、新种命名、建立一个新的分类单位时,G+C含量是一项重要的,必不可少的鉴定指标。其分类学意义主要是作为建立新分类单元的一项基本特征和把那些G+C含量差别大的种类排除出某一分类单元。

上一页  [1] [2] [3]  下一页

医学全在线 版权所有 CopyRight 2006-2046,
浙ICP备12017320号
Baidu
map