自养生物 分解代谢 糖代谢包括 异养生物 自养生物 合成代谢 异养生物 能量转换(能源) 糖代谢的生物学功能 物质转换(碳源) 可转化成多种中间产物,这些中间产物可进一步转化成氨基酸、脂肪酸、核苷酸。 糖的磷酸衍生物可以构成多种重要的生物活性物质:NAD、FAD、DNA、RNA、ATP。 分解代谢:酵解(共同途径)、三羧酸循环(最后氧化途径)、磷酸戊糖途径、糖醛酸途径等。 合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。 分解代谢和合成代谢,受神经、激素、别构物调节控制。 第一节 糖酵解 glycolysis 一、 酵解与发酵 1、 酵解 glycolysis (在细胞质中进行) 酵解酶系统将Glc降解成丙酮酸,并生成ATP的过程。它是动物、植物、微生物细胞中Glc分解产生能量的共同代谢途径。 在好氧有机体中,丙酮酸进入线粒体,经三羧酸循环被彻底氧化成CO2和H2O,产生的NADH经呼吸链氧化而产生ATP和水,所以酵解是三羧酸循环和氧化磷酸化的前奏。 若供氧不足,NADH把丙酮酸还原成乳酸(乳酸发酵)。 2、 发酵fermentation 厌氧有机体(酵母和其它微生物)把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,则称乳酸发酵。 若NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。 有些动物细胞即使在有O2时,也会产生乳酸,如成熟的红细胞(不含线粒体)、视网膜。
二、 糖酵解过程(EMP) Embden-Meyerhof Pathway ,1940 在细胞质中进行 1、 反应步骤 P79 图 13-1 酵解途径,三个不可逆步骤是调节位点。 (1)、 葡萄糖磷酸化形成G-6-P 反应式
此反应基本不可逆,调节位点。△G0= - 4.0Kcal/mol使Glc活化,并以G-6-P形式将Glc限制在细胞内。 催化此反应的激酶有,已糖激酶和葡萄糖激酶。 激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。 P 80 图13-2己糖激酶与底物结合时的构象变化
已糖激酶:专一性不强,可催化Glc、Fru、Man(甘露糖)磷酸化。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。 葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。Glc激酶是一个诱导酶,由胰岛素促使合成, 肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。
(2)、 G-6-P异构化为F-6-P 反应式: 由于此反应的标准自由能变化很小,反应可逆,反应方向由底物与产物的含量水平控制。 此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2 ,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。 (3)、 F-6-P磷酸化,生成F-1.6-P 反应式:
此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。 磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶 (4)、 F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP) 反应式:
该反应在热力学上不利,但是,由于具有非常大的△G0负值的F-1.6-2P的形成及后续甘油醛-3-磷酸氧化的放能性质,促使反应正向进行。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。 该反应由醛缩酶催化,反应机理 P 83
(5)、 磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛 反应式:(注意碳原子编号的变化)
由磷酸丙糖异构酶催化。 已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P
图解: (6)、 3-磷酸甘油醛氧化成1.3—二磷酸甘油酸 反应式:
由磷酸甘油醛脱氢酶催化。 此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。 反应机理: P84 图 13-4 3-磷酸甘油醛脱氢酶的催化机理
碘乙酸可与酶的-SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸) (7)、 1.3—二磷酸甘油酸转化成3—磷酸甘油酸和ATP 反应式:
由磷酸甘油酸激酶催化。 这是酵解过程中的第一次底物水平磷酸化反应,也是酵解过程中第一次产生ATP的反应。 一分子Glc产生二分子三碳糖,共产生2ATP。这样可抵消Glc在两次磷酸化时消耗的2ATP。 (8)、 3—磷酸甘油酸转化成2—磷酸甘油酸 反应式:
磷酸甘油酸变位酶催化,磷酰基从C3移至C2。 (9)、 2—磷酸甘油酸脱水生成磷酸烯醇式丙酮酸 反应式:
烯醇化酶 2—磷酸甘油酸中磷脂键是一个低能键(△G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇键是高能键(△G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。 (10)、 磷酸烯醇式丙酮酸生成ATP和丙酮酸。 反应式:
不可逆,调节位点。 由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶, 这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸
EMP总反应式: 1葡萄糖+2Pi+2ADP+2NAD+ → 2丙酮酸+2ATP+2NADH+2H++2H2O 2、 糖酵解的能量变化 P87 图 13-5 糖酵解途径中ATP的生成
无氧情况下:净产生2ATP(2分子NADH将2分子丙酮酸还原成乳酸)。 有氧条件下:NADH可通过呼吸链间接地被氧化,生成更多的ATP。 1分子NADH→3ATP 1分子FAD →2ATP 因此,净产生8ATP(酵解2ATP,2分子NADH进入呼吸氧化,共生成6ATP)。 但在肌肉系统组织和神经系统组织:一个Glc酵解,净产生6ATP(2+2*2)。 ★甘油磷酸穿梭: 2分子NADH进入线粒体,经甘油磷酸穿梭系统,胞质中磷酸二羟丙酮被还原成3—磷酸甘油,进入线粒体重新氧化成磷酸二羟丙酮,但在线粒体中的3—磷酸甘油脱氢酶的辅基是FAD,因此只产生4分子ATP。
①:胞液中磷酸甘油脱氢酶。 ②:线粒体磷酸甘油脱氢酶。 《罗纪盛》P 259 P 260。 ★苹果酸穿梭机制: 胞液中的NADH可经苹果酸脱氢酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸—2—酮戊二酸载休转运,进入线粒体内,由线粒体内的苹果酸脱氢酶催化,生成NADH和草酰乙酸。 而草酰乙酸经天冬氨酸转氨酶作用,消耗Glu而形成Asp。Asp经线粒体上的载体转运回胞液。在胞液中,Asp经胞液中的Asp转氨酶作用,再产生草酰乙酸。 经苹果酸穿梭,胞液中NADH进入呼吸链氧化,产生3个ATP。 图
苹果酸脱氢酶(胞液) α—酮戊二酸转位酶 苹果酸脱氢酶(线粒体基质) 谷—草转氨酶 Glu—Asp转位酶 谷—草转氨酶 草酰乙酸: 苹果酸: α—酮戊二酸: 3、 糖酵解中酶的反应类型 P88 表13-1 糖酵解反应
氧化还原酶(1种):3—磷酸甘油醛脱氢酶 转移酶(4种):己糖激酶、磷酸果糖激酶、磷酸甘油酸激酶、丙酮酸激酶 裂合酶(1种):醛缩酶 异构酶(4种):磷酸Glc异构酶、磷酸丙糖异构酶、磷酸甘油酸变位酶、烯醇化酶 三、 糖酵解的调节 参阅 P120 糖酵解的调节 糖酵解过程有三步不可逆反应,分别由三个调节酶(别构酶)催化,调节主要就发生在三个部位。 1、 已糖激酶调节 别构抑制剂(负效应调节物):G—6—P和ATP 别构激活剂(正效应调节物):ADP 2、 磷酸果糖激酶调节(关键限速步骤) 抑制剂:ATP、柠檬酸、脂肪酸和H+ 激活剂:AMP、F—2.6—2P ATP:细胞内含有丰富的ATP时,此酶几乎无活性。 柠檬酸:高含量的柠檬酸是碳骨架过剩的信号。 H+:可防止肌肉中形成过量乳酸而使血液酸中毒。 3、 丙酮酸激酶调节 抑制剂:乙酰CoA、长链脂肪酸、Ala、ATP 激活剂:F-1.6-P、 四、 丙酮酸的去路 1、 进入三羧酸循环 2、 乳酸的生成 在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3—磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。
总反应: Glc + 2ADP + 2Pi → 2乳酸 + 2ATP + 2H2O
动物体内的乳酸循环 Cori 循环: 图
肌肉收缩,糖酵解产生乳酸。乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。 Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。 3、 乙醇的生成 酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇脱氢酶催化下,乙醛被NADH还原成乙醇。 总反应:Glc+2pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H20 在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。 4、 丙酮酸进行糖异生 五、 其它单糖进入糖酵解途径 除葡萄糖外,其它单糖也可进行酵解 P 91 图 13-6 各种单糖进入糖酵解的途径 1.糖原降解产物G—1—P 2.D—果糖 有两个途径 3.D—半乳糖 4.D—甘露糖 第二节 三羧酸循环 葡萄糖的有氧氧化包括四个阶段。 ①糖酵解产生丙酮酸(2丙酮酸、 2ATP、2NADH) ②丙酮酸氧化脱羧生成乙酰CoA ③三羧酸循环(CO2、H2O、ATP、NADH) ④呼吸链氧化磷酸化(NADH-----ATP) 三羧酸循环:乙酰CoA经一系列的氧化、脱羧,最终生成CO2、H2O、并释放能量的过程,又称柠檬酸循环、Krebs循环。
原核生物:①~④阶段在胞质中 真核生物:①在胞质中,②~④在线粒体中 一、 丙酮酸脱羧生成乙酰CoA 1、 反应式:
此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TCA的中心环节。 2、 丙酮酸脱氢酶系 丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。 E.coli丙酮酸脱氢酶复合体: 分子量:4.5×106,直径45nm,比核糖体稍大。 酶 辅酶 每个复合物亚基数 丙酮酸脱羧酶(E1) TPP 24 二氢硫辛酸转乙酰酶(E2) 硫辛酸 24 二氢硫辛酸脱氢酶(E3) FAD、NAD+ 12 此外,还需要CoA、Mg2+作为辅因子 这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。 3、 反应步骤 P 93 反应过程
(1)丙酮酸脱羧形成羟乙基-TPP (2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基 (3)E2将乙酰基转给CoA,生成乙酰-CoA (4)E3氧化E2上的还原型二氢硫辛酸 (5)E3还原NAD+生成NADH 4、 丙酮酸脱氢酶系的活性调节 从丙酮酸到乙酰CoA是代谢途径的分支点,此反应体系受到严密的调节控制,此酶系受两种机制调节。 (1)可逆磷酸化的共价调节 丙酮酸脱氢酶激酶(EA)(可被ATP激活) 丙酮酸脱氢酶磷酸酶(EB) 磷酸化的丙酮酸脱氢酶(无活性) 去磷酸化的丙酮酸脱氢酶(有活性) (2)别构调节 ATP、CoA、NADH是别构抑制剂 ATP抑制E1 CoA抑制E2 NADH抑制E3 5、 能量 1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH(3ATP)。二、 三羧酸循环(TCA)的过程 TCA循环:每轮循环有2个C原子以乙酰CoA形式进入,有2个C原子完全氧化成CO2放出,分别发生4次氧化脱氢,共释放12ATP。 1、 反应步骤 P95 图13-9 概述三羧酸循环 (1)、 乙酰CoA+草酰乙酸→柠檬酸 反应式:
柠檬酸合酶,TCA中第一个调节酶:受ATP、NADH、琥珀酰CoA、和长链脂肪酰CoA的抑制;受乙酰CoA、草酸乙酸激活。 柠檬酸合酶上的两个His残基起重要作用: 一个与草酰乙酸羰基氧原子作用,使其易受攻击;另一个促进乙酰CoA的甲基碳上的质子离开,形成烯醇离子,就可与草酰乙酸缩合成C-C键,生成柠檬酰CoA,后者使酶构象变化,使活性中心增加一个Asp残基,捕获水分子,以水解硫酯键,然后CoA和柠檬酸相继离开酶。
氟乙酰CoA可与草酰乙酸生成氟柠檬酸,抑制下一步反应的酶,据此,可以合成杀虫剂、灭鼠药。 图 氟乙酸本身无毒,氟柠檬酸是乌头酸酶专一的抑制剂,氟柠檬酸结合到乌头酸酶的活性部位上,并封闭之,使需氧能量代谢受毒害。它存在于某些有毒植物叶子中,是已知最能致死的简单分子之一。LD50 为0.2mg/Kg体重,它比强烈的神经毒物二异丙基氟磷酸的LD50小一个数量级。 (2)、 柠檬酸→异柠檬酸 反应式:
这是一个不对称反应,由顺鸟头酸酶催化
P 101 图13—12 顺乌头酸酶与柠檬酸的不对称结合
顺乌头酸酶只能以两种旋光异构方式中的一种与柠檬酸结合,结果,它催化的第一步脱水反应中的氢全来自草酰乙酸部分,第二步的水合反应中的OH也只加在草酰乙酸部分。这种酶与底物以特殊方式结合(只选择两种顺反异构或旋光异构中的一种结合方式)进行的反应称为不对称反应。结果,TCA第一轮循环释放的CO2全来自草酰乙酸部分,乙酰CoA羰基碳在第二轮循环中释放,甲基碳在第三轮循环中释放50%,以后每循环一轮释放余下的50%。 柠檬酸上的羟基是个叔醇,无法进一步被氧化。因此,柠檬酸需转变成异柠檬酸,将不能被氧化的叔醇,转化成可以被氧化的仲醇。 90%柠檬酸、4%顺乌头酸、6%异柠檬酸组成平衡混合物,但柠檬酸的形成及异柠檬酸的氧化都是放能反应,促使反应正向进行。 (3)、 异柠檬酸氧化脱羧生成α-酮戊二酸和NADH 反应式:
这是三羧酸循环中第一次氧化脱羧反应,异柠檬酸脱氢酶,TCA中第二个调节酶: Mg2+(Mn2+ )、NAD+和ADP可活化此酶,NADH和ATP可抑制此酶活性。 细胞在高能状态:ATP/ADP、NADH/NAD+比值高时,酶活性被抑制。 线粒体内有二种异柠檬酸脱氢酶,一种以NAD+为电子受体,另一种以NADP+为受体。前者只在线粒体中,后者在线粒体和胞质中都有。 (4)、 α-酮戊二酸氧化脱羧生成琥珀酰CoA和NADH 反应式: α-酮戊二酸脱氢酶系,TCA循环中的第三个调节酶:受NADH、琥珀酰CoA、Ca2+、ATP、GTP抑制 α-酮戊二酸脱氢酶系为多酶复合体,与丙酮酸脱氢酶系相似(先脱羧,后脱氢) (5)、 琥珀酰CoA生成琥珀酸和GTP 反应式:
琥珀酰CoA合成酶(琥珀酸硫激酶) 这是TCA中唯一的底物水平磷酸化反应,直接生成GTP。 在高等植物和细菌中,硫酯键水解释放出的自由能,可直接合成ATP。 在哺乳动物中,先合成GTP,然后在核苷二磷酸激酶的作用下,GTP转化成ATP。 (6)、 琥珀酸脱氢生成延胡索酸(反丁烯二酸)和FADH 反应式:
琥珀酸脱氢酶是TCA循环中唯一嵌入线粒体内膜的酶。 丙二酸是琥珀酸脱氢酶的竞争性抑制剂,可阻断三羧酸循环。 (7)、 延胡索酸水化生成L-苹果酸 反应式:
延胡索酸酶具有立体异构特性,OH只加入延胡索酸双键的一侧,因此只形成L-型苹果酸。 (8)、 L-苹果酸脱氢生成草酰乙酸和NADH 反应式:
[1] [2] 下一页 转帖于 医学全在线 www.lindalemus.com
广告加载中.... |