⒊ 匹配数据的OR可信限
可用Miettinen法〔以显著性检验为基础的方法,公式(附式5-1)〕,实例见第四章表4-11的数据分析。还可用下述方法:
(1)先算方差:
(2)OR 的(1-α)%可信限
计算实例:仍用表4-11的数据,计算OR的95%可信限。Uα/2=1.96,OR=1.71,Var(lnOR)=(60+35)/(60×35)=0.0452,
结果与用公式(附式5-1)算得的(1.14,2.57)很接近,而且理论上更恰当。
(二)病例对照研究样本含量的估计
所谓样本含量估计是指在满足一定条件下的一个粗略估计数;条件变动时估计数会随之发生变化,所以只有相对意义,而不能看作是保证可达到目的的准确数值。
样本含量(n)的估计须根据①对照人群的预防暴露率,p0;②暴露与疾病的联系程度,以RR为指标;③假阳性率,即Ⅰ型误差,α;④假阳性率,即Ⅱ型误差,β。
1.非匹配设计病例数与对照数相等时每组所需人数
式中P1=P0RR/[1+P0(RR-1)],p=0.5(P1+P0),q=1-P0。Uα与Uβ可查附表5-1。有时也可不用公式,通过查表即可得n,例如附表5-2。
附表5-2 病例对照研究样本含量(非匹配,病例组与
对照组人数相等时每组需要人数)
α=0.05(双侧),β=0.10 | ||||||||||||
RR |
p0 | |||||||||||
0.01 |
0.05 |
0.1 |
0.2 |
0.4 |
0.5 |
0.6 |
0.8 |
0.9 | ||||
0.1 |
1420 |
279 |
137 |
66 |
31 |
24 |
20 |
18 |
23 | |||
0.5 |
6323 |
1286 |
658 |
347 |
203 |
182 |
176 |
229 |
378 | |||
2.0 |
3206 |
689 |
378 |
229 |
176 |
182 |
203 |
347 |
658 | |||
3.0 |
1074 |
236 |
133 |
85 |
71 |
77 |
89 |
163 |
319 | |||
4.0 |
599 |
134 |
77 |
51 |
46 |
51 |
61 |
117 |
232 | |||
5.0 |
406 |
92 |
54 |
37 |
35 |
40 |
48 |
96 |
194 | |||
10.0 |
150 |
36 |
23 |
18 |
20 |
24 |
31 |
66 |
137 | |||
20.0 |
56 |
18 |
12 |
11 |
14 |
18 |
24 |
54 |
115 |
(节录:Schlesselman,1982)
例:现拟进行一项病例对照调查,研究吸烟与肺癌的关系。预期吸烟者的相对危险度为10.0,人群吸烟率约0.4。设定α=0.05(双侧检验),β=0.10,查表可见至少需病例与对照各20。样本较小是因RR很大。如用公式(附式5-14)计算,得数也相近,(n≈22),稍有出入是计算时保留小数位数不同所致。
在α=0.05(双侧检验)时,Ua=1.96,β=0.10,Uβ=1.28,于是式(附式5-14)可简化为
2. 非匹配设计病例数与对照数不等时
设:病例数:对照数1:c,则需要的病例数
式中,,P1的计算同公式(附5-14)
对照数=cn。
3. 1:1匹配(配对)设计 须加估计的不是总例数而是病例与对照暴露情况不同的对子数(即表4-10中的f10与f01),设为m,则
式中PRR/(1+RR)。
需要的总对数(f11+f10+f01+f00)设为M,则
式中p1=p0RR/﹝1+p0(RR-1)﹞,q1=1-p1,q0=1-p0
例:设对照暴露率p0=0.3,α=0.05,β=0.1,为检出RR=2需要的
m=[1.96/2+1.28186,即共需f10+f01=90对,总对数=186。