3.分子杂交:(hybridization)
不同来源的核酸变性后,合并在一处进行复性,这时,只要这些核酸分子的核苷酸序列含有可以形成碱基互补配对的片段,复性也会发生于不同来源的核酸链之间,形成所谓的杂化双链(heterodup lex),这个过程称为杂交(hybridization)图15-10,I)。杂交可以发生于DNA与DNA之间,也可以发生于RNA与RNA之间和DNA与RNA之间。例如,一段天然的DNA和这段DNA的缺失突变体(假定这种突变是DNA分子中部丢失了若干碱基对)一起杂交,电子显微镜下可以看到杂化双链中部鼓起小泡。测量小泡位置和长度,可确定缺失突变发生的部位和缺失的多少。核酸杂交技术是目前研究核酸结构、功能常用手段之一,不仅可用来检验核酸的缺失、插入,还可用来考察不同生物种类在核酸分子中的共同序列和不同序列以确定它们在进化中的关系。其应用当然远不止于确定突变位置这一例(图15-10Ⅱ)。
图15-10 核酸杂交及其应用示意图
Ⅰ.变性、复性和杂交。粗细线分别代表不同DNA。A是杂化双链
Ⅱ.突变体的鉴别。B代表天然DNA;C是B的缺失突变体;虚线框内是已缺失的部分;
D是显示从天然DNA链鼓出小泡 Ⅲ.粗线代表探针,粗线上的X表示放射性标记
在核酸杂交的基础上发展起来的一种用于研究和诊断的非常有用的技术称探针技术(Probe)。一小段(例如十数个至数百个)核苷酸聚合体的单链,有放射性同位素如32P、35S或生物素标记其末端或全链,就可作为探针。把待测DNA变性并吸附在一种特殊的滤膜,例如硝酸纤维素膜上。然后把滤膜与探针共同培育一段时间,使发生杂交。用缓冲液冲洗膜。由于这种滤膜能较牢固地吸附双链的核酸,单链的在冲洗时洗脱了。带有放射性的探针若能与待测DNA结合成杂化双链,则保留在滤膜上。通过同位素的放射自显影或生物素的化学显色,就可判断探针是否与被测的DNA发生杂交。有杂交现象则说明被测DNA与探针有同源性(homogeneity),即二者的碱基序列是可以互补的。例如:想知道某种病毒是否和某种肿瘤有关,可把病毒的DNA制成探针。从肿瘤组织提取DNA,与探针杂交处理后,有杂化双链的出现,就说明两种DNA之间有同源性。这不等于可以说这种病毒引起肿瘤,但至少这是可以继续深入研究下去的一条重要线索。
探针技术(图15-10Ⅲ)在遗传性疾病诊断上已开始应用。例如诊断地中海贫血或血红蛋白病,可以由已确诊的病人白细胞中提取DNA,这就是诊断探针。用诊断探针检查,不但可以对有症状患者进行确诊,还可以发现一些没有症状的隐性遗传性疾病。从胎儿的羊水也可以提取到少量DNA。由于探针技术比较灵敏,就使遗传性疾病的产前诊断较为容易办得到了。杂交和探针技术是许多分子生物学技术的基础,在生物学和医学的研究中,以及临床诊断中得到了日益广泛的应用。