例:YEEI与src family的SH2结合
YMXM与growth factor receptor、P13Kp85的SH2结合
YVIP与PLCγ的SH2结合
YXNX与Grb2的SH2结合
B.SH3结构域:由50~100个氨基酸组成,介导信号分子与富含脯氨酸的蛋白分子的结合,其亲和力亦与脯氨酸残基及邻近氨基酸残基所构成的基序序列相关。
例:RKLPPRPSK与P13K的亲和力为9.1μM
PALPPLPRY与P13K的亲和力为17μM
C.PH结构域:由100~120个氨基酸组成,其功能尚未完全确定。目前已知它可以与磷脂类分子PIP2、PIP3、IP3等结合。同时也发现,一些蛋白分子,如PKC和G蛋白的βγ亚单位也可以与PH结构域结合。
D.PTB结构域:由约160个氨基酸组成,与SH2一样,PTB结构域也可以识别一些含磷酸酪氨酸的基序,但其结合基序与SH2结构域有所差别。
作为调控结合元件,它们在结构和功能上有如下特点:
①一个信号分子可以含有两种以上的调控结合元件(图21-23),因此可以同时与两种以上的其它信号分子相结合,例如,在蛋白酪氨酸激酶Btk中即有PH结构域、SH3结构域和SH2结构域等3个调控结合元件。
图21-23 信号转导分子中的调控结合元件
Y-Kinase:tyrosine kinaseDBD:DNA binding domain PP:Prorich
ABD:actinbinding domainGAP: GTPase activating domain
②同一类调控结合元件可存在于多种不同的信号转导分子中,例如,PH结构域存在于某些蛋白激酶、低分子量G蛋白调节分子及细胞骨架蛋白等多种信号转导分子中。这些调控结合元件的一级结构仍然是不同的,因此对所结合的信号分子具有选择性,这是保证信号分子相互作用具有特异性的基础。
③这些结构域本身均为非催化结构域。
2.两条典型的信号转导途径
(1)表皮生长因子受体介导的信号转导途径
表皮生长因子与其受体-表皮生长因子受体结合后可引发一系列细胞内变化,最终使细胞发生分化或增殖。表皮生长因子受体是一种受体酪氨酸蛋白激酶,而受体酪氨酸蛋白激酶→Ras→MAPK级联途径是表皮生长因子刺激信号传递到细胞核内的最主要途径。它由以下成员组成:表皮生长因子受体→含有SH2结构域的接头蛋白(如Grb2)→鸟嘌呤核苷酸释放因子(如SOS)→Ras蛋白→MAPKKK(如Raf1)→MAPKK→MAPK→转录因子等(图21-24)。
图21-24 EGF受体介导的信号转导过程
表皮生长因子与受体结合后,可以使受体发生二聚体化,从而改变了受体的构象,使其中的蛋白酪氨酸激酶活性增强,受体自身的酪氨酸残基发生磷酸化,磷酸化的受体便形成了与含SH2结构域的蛋白分子Grb2结合的位点,导致Grb2与受体的结合。Grb2中有两个SH3结构域,该部位与一种称为SOS的鸟苷酸交换因子结合,使之活性改变,SOS则进一步活化Ras,激活的Ras作用于MAPK激活系统,导致ERK的激活。最后ERK转移到细胞核内,导致某些转录因子的活性改变从而改变基因的表达状态及细胞的增殖与分化过程。
(2)γ-干扰素受体介导的信号转导
γ-干扰素是由活化T细胞产生的,它具有促进抗原提呈和特异性免疫识别的作用,并可促进B细胞分泌抗体。γ-干扰素与受体结合以后,也可以导致受体二聚体化,二聚体化的受体可以激活JAK-STAT系统,后者将干扰素刺激信号传入核内。JAK(Janus Kinase)为一种存在于胞浆中的蛋白酪氨酸激酶,它活化后可使干扰素受体磷酸化。STAT(Signal Transducerand Activator of Transcription)可以通过其SH2结构域识别磷酸化的受体并与之结合。然后STAT分子亦发生酪氨酸的磷酸化,酪氨酸磷酸化的STAT进入胞核形成有活性的转录因子,影响基因的表达(图21-25)。
图21-25 γ-干扰素受体介导的信号转导过程
JAK:Janus kinase
STAT: Signal Transducer and Activator of Transcription
GAS: γinterferonactivated sequence element
上述两条信号转导途径仅仅是多种信号转导途径的代表,尽管90年代以来科学家们在细胞信号转导的分子机理研究方面已经取得了一些成就,但距离阐明细胞中存在的全部传递网络系统还十分遥远,有待科学家们不断努力,在下个世纪实现人类认识自我的愿望。