网站首页
开云app安装不了怎么办
药师
护士
卫生资格
高级职称
住院医师
畜牧兽医
医学考研
医学论文
医学会议
开云app安装
网校
论坛
招聘
最新更新
网站地图
您现在的位置: 医学全在线 > 理论教学 > 临床专科 > 放射诊断学 > 正文:1-1 X线检查的基本原理和方法
    

X线检查的基本原理和X线检查的方法

 

  △(四)技术设备改进与检查方法的新进展简介

  X线诊断学近30年来,由于物理学、药理学、医学生物工程及电子工业的发展,促进X线诊断机硬件的改善,从而获得新的影像,促进诊断学的发展。

  1.大功率X线机、配备影像增强器及影像转化装置 X线机的基本结构为高压发生器、X线球管及控制台上三大部件。由于高压发生器及X线球管结构改进,使得球管能量(即功率)加大,可达100KV(Kilowatt),同时球管焦点微小(0.1—0.3mm,甚至0.05mm),故摄取照片采用高mA短时间曝光,X线摄像对比好,清晰度强。现在常用1000、1250或2000mA大型X线机作特殊检查及造影检查。

  近代X线机常配备影像增强器(Image intensifier,简称Ⅱ)及电视设备(Television,简称TV)。电视屏幕上影象亮度很大,能显示较小的病灶,比普通透视优越。操作可在比较明亮的机房或传送到其它房间内察看,后者称为隔室遥控检查,工作人员可避免射线的照射。有时还配备荧光缩影、磁带录象(Video-tape)及电影(Cine-radiography)装置,将影像记录留存,及时拍照脏器病变及功能变化,便于分析研究及会诊示教之用。上述荧光缩影、电视技术(包括录相)和电影照相等称为影像转换装置,多用于胃肠检查,观察心脏搏动,特别是在大功率X线机上配备影像转换装置,对于心脏造影及各种血管造影的诊断准确性有明显的提高。

  影像增强器能减少X线用量。未配备Ⅱ的普通透视,X线球管需发射3~5mA才能达到诊断要求;而配备Ⅱ后,X线球管只须发射0.3~0.5mA,不仅合乎诊断要求,而且亮度比普通透视高。因此,Ⅱ既能减少球管损耗,又能降低患者及工作人员所接受的X线辐射剂量。

  2.选择性心、血管造影(1)选择性心脏造影(Selective cardiography):通过左心或右心导管将高浓度有机碘溶液注入某心腔内,称为选择性心腔造影,由于心脏搏动快及血液稀释作用,这种造影必须配备高压快速注射和快速换片装置。近年来,由于使用大功率双向球管同时投照正侧位照片,并结合电视、录像及电影设备从从而提高影像质量。(2)选择性血管造影(Selective angiography):采用顶端有不同弯度形状的特异导管,经皮穿刺(多穿刺股动脉),送入特定血管内,注射有机碘溶液(多用泛影葡胺),称为选择性血管造影,这种造影应该范围极其广泛,如冠状动脉造影、经颈动脉脑血管造影、椎动脉造影以及腹主动脉各分支之造影(含腹腔动脉、肠系膜上动脉、肠系膜下动脉、肾动脉等),还有其它血管等。各种造影对诊断脏器肿瘤及血管性病变(如栓塞、出血)皆有明显帮助,亦是开展介入放射学的基础。

  3.数字减影血管造影(Digital subtraction angiography,DSA)DSA强化血管造影的分辨率,显示细小血管,是促进医学影像学发展的手段之一。DSA分为两种:

  (1)静脉数字减影血管造影(Intravenous DSA,IV DSA)DSA极大地强化动脉内低浓度造影剂的影像,故静脉注射造影剂能使周身大部分动脉较好地显影。此法称为IV DSA。IV DSA的优点是比动脉插管创伤性大,操作简易。缺点是需要增加造影剂的用量,以增大血管内碘浓度,致使其应用仍有限制,不能取代动脉插管法。

  (2)动脉数字减影血管造影(Intraarterial DSA,IA DSA);通过动脉插管将导管直接送至特定部位前的动脉(见下述优点③),注射造影剂照相。经数字减影处理后,形成IADSA影像,其优点是,①较清晰地显示动脉小分支。②减少造影剂用量,比常规动脉造影少用50%造影剂。③不需要将导管深入插至特定部位的动脉(如同选择性或超选择性造影那样),例如在锁骨下动脉注射可显出椎动脉,在腹主动脉下部注射可显出肾动脉等等。④数字信息可储存并适时显示,有利于介入放射学的检查。

  DSA的限制:①血管影象重迭,同一部位多血管相互重迭,故需要多体位投照,例如正侧位同时投照。②需要病人密切合作,避免一切随意的运动。③DSA有利于显示小动脉支,但对0.2mm以下的微小血管尚不能显示。④非自主亦即不随意的运动,如吞咽、呼吸、及胃肠蠕动影响图像清晰度。

  4.电子计算机体层摄影(Computed tomography,简称CT)是近十年来发展迅速的电子计算机和X线相结合的一项新颖的诊断新技术。其主要特点是具有高密度分辨率,比普通X线照片高10~20倍。能准确测出某一平面各种不同组织之间的放射衰减特性的微小差异,以图像或数字将其显示,极其精细地分辨出各种软组织的不同密度,从而形成对比。如头颅X线平片不能区分脑组织及脑脊液,而CT不仅能显示出脑室系统、还能分辨出脑实质的灰质与白质;如再引入造影剂以增强对比度,对其分辨率更为提高,故而加宽了疾病的诊断范畴,还提高了诊断正确率。但CT也有其限制,如对血管病变,消化道腔内病变以及某些病变的定性等。(参考第七章CT检查与诊断)。

  5.磁共振(Magnetic resonance,MR)或磁共振成像(Magnetic resonance Image,MRI) 是利用原子核在磁场内共振而产生影像的一种新的诊断方法。为非射线成像,亦为无创伤性检查方法之一种,自80年代应用于临床后,其检查技术发展非常迅速且日臻完善,成为影像诊断学中重要的成员之一。

  MRI是利用含奇数质子的原子核(如1H、13C、19F、23Na)自旋运动(Spin)的特点,置于外加的强大均匀磁场(称为主磁场)内,使原排列杂乱的原子核在磁力作用下而按周围磁场方向排列成行,这种原子核围绕主磁场轴旋转的现象,称为旋进(precession)。自旋和旋进是奇数质子原子核的两种特性,不同元素原子核的旋转频率各异。因质子旋进无聚合性,磁化向量是顺主磁场力线方向,无切割磁力线的力,故不产生电压变化,以致不能检测出磁场变化的信号,为测出其磁场变化,必须将顺磁力线的净磁化移位,因而在外加磁场内,又加用射频脉冲,使射频脉冲在质子共振频率上垂直作用于磁场,则净磁化移位,在射频脉冲结束后,可接受到因磁场改变而引起的电压变化。简述之,射频脉冲的频率如接近某元素的原子核的旋进频率,该原子即被激发,并改变原子核磁轴的偏斜方向,这一过程称为MRI。发生射频脉冲是间断的,所产生的电磁(能量)经接受器收集并转换为电信号,再经一系统处理。图像重建等,形成供诊断使用的MRI图像。除影像诊断外,还可利用高磁场(1.5T或2.0T)定域频谱分析(Magnetic Resonance Spectroscopy),显示该区域的代谢过程,利用某些疾病的早期诊断。MRI与CT相比较,其优越性是非射线成像,且可任何方向切层扫描;如冠状面、矢状面、横断面以及斜面等,MRI与CT在成像方面还有不同之处是有多个参数,如质子密度,T1与T2弛豫时间。目前软件的开发,还可不用造影剂而显示血管,称为MRA(Magnetic Resonance Angiography)。MRI也有不足之处,如成像时间长,对钙化不灵敏,费用较昂贵等。

上一页  [1] [2] [3] [4] [5]  下一页

关于我们 - 联系我们 -版权申明 -诚聘英才 - 网站地图 - 医学论坛 - 医学博客 - 网络课程 - 帮助
医学全在线 版权所有© CopyRight 2006-2026,
浙ICP备12017320号
百度大联盟认证绿色会员可信网站 中网验证
Baidu
map