主要参考教材: 1. Biochemistry,5/e,Jeremy M. Berg,John L. Tymoczko,Lubert Stryer,2002, W.H.Freeman Publishing House, 2. Lehninger Principles of Biochemistry 4/e, Nelson, David L. , Cox, Michael M. 2005, W.H. Freeman Publishing House 3. Biochemistry, An Introduction (2e), Trudy Mckee and James R.McKee, 1999, McGram -Hill Companies, Inc. 4. Molecular Cell Biology, 5e,Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, Lawrence Zipursky, and James Darnell.,2004,W.H. Freeman Publishing House 5. 生物化学(第3版),王镜岩,朱圣庚,徐长法主编,高等教育出版社,2002年版 6. 张来群,谢丽涛,李宏,生物化学习题集(第2版),科学出版社,2002年7月 7. 陈钧辉,杨荣武,郑伟娟等,生物化学习题解析(第2版),科学出版社,2001年9月 参考文献: 蛋白质组和蛋白质组学,现代临床医学生物工程学杂志,2003,9(3):29 曹志成,余坚文,蛋白质组学—引领后基因组时代,中国生物工程杂志,2005,25(1):33-38 孟令波1 ,霍宏图,蛋白质组学的研究及其发展趋势,哈尔滨学院学报,2005,26(10):125-131. 陈强,刘亚刚,杨雪,蛋白质组学的研究进展,西南民族大学学报,2005,31(2):257-160 蛋白质组学和疾病,现代临床医学生物工程学杂志,2004,10(2):177 张鹭,蛋白质组学及其技术体系简介,吉林特产高等专科学校学报,2004,13(2):31-34 刘萍,章怡祎,蛋白质组学技术在医学研究中的应用,湖北中医学院学报,2006,8(1):67-69 司英健, 蛋白质组学研究的内容、方法及意义,国外医学临床生物化学与检验学分册,2003,24(3):167-168 邓琳,蛋白质组学研究进展与趋势,中国科技信息,2005,(13):43-44 王阳梦,何聪芬,董银卯,蛋白质组学研究中的新技术,生物技术通报,2005,(5):46-50 蒋宁,周文霞,张永祥,药物蛋白质组学研究进展,中国新药杂志,2005,14(12):1391-1394 鞠艳芳,高建恩,孙启鸿,线粒体蛋白质组学研究进展,第四军医大学学报,2006,27(8):760-762 周海涛,黎明涛,贾少微,药物滥用研究中蛋白质组学技术应用进展,中华医学杂志,2006,86(7):498-500 李红梅,蛋白质组学及其在肿瘤研究中的应用,陕西师范大学学报(自然科学版),2005,33(6):128-130 朱红,周海涛,蛋白质组学及其主要技术,癌变,畸变,突变,2005,17(5):318-320 李金国,宋华静,李洁,蛋白质组学研究及其在临床中的应用,社区医学杂志,2006,4(2):35-37 谭毓治,蛋白质组学与药学研究,广东药学院学报,2005,21(6):768-770 刘文江,欧阳五庆,蛋白质组学在新药开发中的应用,动物保健品,2004,(8):70-71 王菊蓉, 郭葆玉,蛋白质组学在药学研究中的应用,医学分子生物学杂志,2004, 1 (4):242-244 张朝政,许健,于涟,蛋白质组学在药学研究中的应用进展,科技通报,2004,20(6):542-545 刘兴凤,定量蛋白质组学检测技术进展,泸州医学院学报,2005,28(6):567-569 周卫东,后基因组时代的蛋白质组学,临沂师范学院学报,2005,27(3):46-48 李小兵 方永奇,脑蛋白质组学研究进展,中华检验医学杂志,2006,29(2):182-184 杨泽松,陈建斌,药物蛋白质组学的研究进展,江西医学院学报,2006,46(1):160-162 蒋宁,周文霞,张永祥,药物蛋白质组学研究进展,中国新药杂志,2005,14(12):1391-1394 张晓勤,王慧中,水稻蛋白质组学研究进展,湖北农业科学,2005,(6):106-109 卢义钦,刘俊凡,核仁的蛋白质组学,生命的化学,2003,23(4):245-247 肖美芳,蛋白芯片技术及其在疾病诊断中的应用现状与展望,现代检验医学杂志,2006,21(1):44-46 裴孝平,蛋白芯片技术及其在血液病中的应用,国外医学输血及血液学分册,2005,28(4):346-348 鲁劲松,孙启玉,蛋白质芯片技术的研究进展,中国科学基金,2005,(5):277-281 岳文涛,蛋白质芯片技术及其应用,结核病与胸部肿瘤,2005,(3):157-160 余章斌,蛋白质芯片检测技术的研究进展,国外医学临床生物化学与检验学分册,2005,26(11):841-843 于艳军,蛋白质芯片简介,中学生物学,2005,21(10):7-8 李锐国,蛋白质组学在肝癌及其相关疾病研究中的应用,中国肿瘤临床,2005,32(16):957-960 卢卫红,郑琦,生物芯片技术的应用与展望,生物技术通讯,2006,17(2):293-295 龙桂友,刘杰,饶力群,植物蛋白质组研究方法,湖南农业大学学报(自然科学版),2005,31(3):342-346 韩萍,俞诗源,人类基因组计划研究进展,西北师范大学学报(自然科学版),2005,41(5):96-101 易家康,怎样破解癌症基因组,世界科学,2006,(1):18 雷钧,遗传学是用来转祸为福的,世界科学,2006,(1):7-9 雷瑞鹏,殷正坤,对“遗传密码”的哲学思考,自然辩证法通讯,2004,26(6):33-39 孙国凤,法国基因组研究计划,生物技术通报,2004,(6):50-51 王林杰, 高友鹤,复杂性状疾病的系统生物学研究,基础医学与临床,2005,25(1):11-15 吴琼, 吴永忠,基因时代的若干人文反思,边疆经济与文化,2006,(1):66-68 吴浩,曹明富,假基因,生物学通报,2005,40(5):20 张雅娟,生物化学发展中的分化与综合,苏州大学学报(工科版),2004,24(6):62-63 郝方,张雪莲,张顺宝,裴秀英,生物技术在新药研发中的进展与展望,宁夏医学杂志,2005,27(2):142-143 焦传珍,系统生物学及其研究进展,生物学通报,2005,40(12):3-4 赖敏,试述人类基因组学的研究与中医药学的发展,实用中医药杂志,2006,22(5):314-315 张彦民, 李宝才, 朱利平, 戴伟锋, 范家恒,多糖化学及其生物活性研究进展,昆明理工大学学报(理工版),2003,28(3):140-146 范学强, 迟延青, 姬胜利, 张天民,肝素的化学修饰及其修饰产物生物活性的研究进展,中国生化药物杂志,2004,25(1):41-44 周海燕,N_糖链参与细胞凋亡的研究进展,国外医学·生理、病理科学与临床分册,2001,21(5):386-388 于春燕,郎刚华,刘万顺,海藻糖研究进展,青岛大学学报,2000,13(2):55-59 詹洁,酵母N-糖基化工程研究进展,生物技术通讯,2004,15(3):272-274 张健,张其胜,田庚元,拟糖蛋白合成研究进展,有机化学,2003,23(5):425-431 冯伯森,胡莹,人及哺乳动物受精与糖蛋白的关系,生理科学进展,2003,34(1):86-89 吴祺,生物大分子分析方法的巨大进展,陕西师范大学继续教育学报(西安),2003,20(4):113-116 张平,生物化学研究进展概述,福建畜牧兽医,2004,26(1):45-46 张莉,李娜,赵凤林,糖胺聚糖分析测定的研究进展,分析化学评述与进展,2005,33(7):1023-1028 黄思玲, 凌沛学, 娄红祥, 张天民,糖胺聚糖磷脂复合物的研究进展,中国生化药物杂志,2005,26(5):306-308 张晓茹,李英霞,褚世栋,糖簇分子和糖树状分子的合成进展,有机化学,2004,24(2):119-126 丁震,候晓华,糖蛋白2与胰腺炎,临床内科杂志,2004,21(6):429-430 仲娜,郝林华,王小如,糖蛋白药物的研究进展,中国新药杂志,2005,14(12):1400-1403 秦宏伟,糖的生物学效应的研究进展,济宁师专学报,2001,22(6):49-50 刘慧慧,李太武,苏秀榕,糖蛋白及其在动物精卵识别中的作用,海洋科学,2004,28(1):67-70 袁华茂,宋金明,糖类化合物的化学修饰及其生物活性的研究进展,海洋科学,2003,27(3):27-32 焦克芳,陈望忠,曲红,糖类与生命科学研究进展,大学化学,1999,14(1):28-31 白丽荣,糖生物学研究进展,生物学通报,2002,37(10):7-8 马盛群,糖生物学与糖蛋白研究进展,南京农专学报,2001,17(1):4-8 杨珺,蔡绍皙,邹全明,糖组学研究技术及其进展,生物化学与生物物理进展,2005,,32(1):9-12 卢雯静,糖组学研究技术进展及其意义,国际检验医学杂志,2006,27(4):366-368 王洋,崔继哲,周静,植物表达重组蛋白的N_糖基化研究进展,中国农学通报,2005,21(10):174-179 朱科学,周惠明,郭晓娜,植物来源糖蛋白的结构与功能,食品与发酵工业,2002,28(12):57-61 谢轶,余柏松,一种新的糖肽类抗生素雷莫拉宁研究进展,国外医药抗生素分册,2003,24(2):88-92 贝特类调脂药物的研究及应用进展,中国新药与临床杂志,2000,19(5):350-353 李黎,谢玉才,陆国平,他汀类调脂作用的药物基因组学,中华心血管病杂志,2006,34(1):88-91 李建军,王德胜,烟酸类调脂药物的现状与展望,医师进修杂志,2001,24(12):10-11 鲁晶红,符芳,栗庆丰,因芯片技术及其应用,畜牧兽医科技信息,2006,(3) 江南,陈洪,生物芯片的研究和应用现状,株洲工学院学报,2005,19(6):84-89 张喜平 陆贝,组织芯片技术现状与应用,医学研究杂志,2006,35(4):63-64 康熙雄,免疫芯片,齐鲁医学检验,2005,16(3):3-5 马大龙,免疫组学21世纪免疫学家的新挑战,中华微生物学和免疫学杂志,2005,25(9):697-801 贾清,刘亚刚,吴皎,生物芯片技术的研究进展,西南民族大学学报(自然科学版),2005年增刊,50-52 潘继红,生物芯片技术在新药筛选中的应用,山东医药,2005,45(26):73-74 强伯勤,我国人类基因组研究的回顾,医学研究杂志,2006,35(2):1-2 张舒雅,药物基因组学及生物芯片应用,世界临床药物,2006,27(5):314-316 卢卫红,郑琦,生物芯片技术的应用与展望,生物技术通讯,2006,17(2):293-295 N.R. Pace. 2000. The universal nature of biochemistry Proc. Natl. Acad. Sci. U. S. A. 98: 805-808. L.E. Orgel. 1987. Evolution of the genetic apparatus: A review Cold Spring Harbor Symp. Quant. Biol. 52: 9-16. A. Lazcano and S.L. Miller. 1996. The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time Cell 85: 793-798. L.E. Orgel. 1998. The origin of life: A review of facts and speculations Trends Biochem. Sci. 23: 491-495. Darwin, C., 1975. On the Origin of Species, a Facsimile of the First Edition. Harvard University Press. Gesteland, R. F., Cech, T., and Atkins, J. F., 1999. The RNA World . Cold Spring Harbor Laboratory Press. Dawkins, R., 1996. The Blind Watchmaker. Norton. Smith, J. M., and Szathmáry, E., 1995. The Major Transitions in Evolution . W. H. Freeman and Company. S.L. Miller. 1987. Which organic compounds could have occurred on the prebiotic earth? Cold Spring Harbor Symp. Quant. Biol. 52: 17-27. F.H. Westheimer. 1987. Why nature chose phosphates Science 235: 1173-1178. M. Levy and S.L. Miller. 1998. The stability of the RNA bases: Implications for the origin of life Proc. Natl. Acad. Sci. U. S. A. 95: 7933-7938. R. Sanchez, J. Ferris, and L.E. Orgel. 1966. Conditions for purine synthesis: Did prebiotic synthesis occur at low temperatures? Science 153: 72-73. D.R. Mills, R.L. Peterson, and S. Spiegelman. 1967. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule Proc. Natl. Acad. Sci. U. S. A. 58: 217-224. R. Levisohn and S. Spiegelman. 1969. Further extracellular Darwinian experiments with replicating RNA molecules: Diverse variants isolated under different selective conditions Proc. Natl. Acad. Sci. U. S. A. 63: 805-811. D.S. Wilson and J.W. Szostak. 1999. In vitro selection of functional nucleic acids Annu. Rev. Biochem. 68: 611-647. T.R. Cech. 1993. The efficiency and versatility of catalytic RNA: Implications for an RNA world Gene 135: 33-36. L.E. Orgel. 1992. Molecular replication Nature 358: 203-209. W.S. Zielinski and L.E. Orgel. 1987. Autocatalytic synthesis of a tetranucleotide analogue Nature 327: 346-347. K.E. Nelson, M. Levy, and S.L. Miller. 2000. Peptide nucleic acids rather than RNA may have been the first genetic molecule Proc. Natl. Acad. Sci. U. S. A. 97: 3868-3871. P. Reichard. 1997. The evolution of ribonucleotide reduction Trends Biochem. Sci. 22: 81-85. A. Jordan and P. Reichard. 1998. Ribonucleotide reductases Annu. Rev. Biochem. 67: 71-98. T.H. Wilson and P.C. Maloney. 1976. Speculations on the evolution of ion transport mechanisms Fed. Proc. 35: 2174-2179. T.H. Wilson and E.C. Lin. 1980. Evolution of membrane bioenergetics J. Supramol. Struct. 13: 421-446. G. Mangiarotti, S. Bozzaro, S. Landfear, and H.F. Lodish. 1983. Cell-cell contact, cyclic AMP, and gene expression during development of Dictyostelium discoideum Curr. Top. Dev. Biol. 18: 117-154. C. Kenyon. 1988. The nematode Caenorhabditis elegans Science 240: 1448-1453. J. Hodgkin, R.H. Plasterk, and R.H. Waterston. 1995. The nematode Caenorhabditis elegans and its genome Science 270: 410-414. J.S. Richardson. 1981. The anatomy and taxonomy of protein structure Adv. Protein Chem. 34: 167-339. R.F. Doolittle. 1985. Proteins Sci. Am. 253: (4) 88-99. F.M. Richards. 1991. The protein folding problem Sci. Am. 264: (1) 54-57. A.L. Weber and S.L. Miller. 1981. Reasons for the occurrence of the twenty coded protein amino acids J. Mol. Evol. 17: 273-284. M.W. Hunkapiller and L.E. Hood. 1983. Protein sequence analysis: Automated microsequencing Science 219: 650-659. B. Merrifield. 1986. Solid phase synthesis Science 232: 341-347. F. Sanger. 1988. Sequences, sequences, sequences Annu. Rev. Biochem. 57: 1-28. C. Milstein. 1980. Monoclonal antibodies Sci. Am. 243: (4) 66-74. S. Moore and W.H. Stein. 1973. Chemical structures of pancreatic ribonuclease and deoxyribonuclease Science 180: 458-464. Deutscher, M. (Ed.), 1997. Guide to Protein Purification. Academic Press. Scopes, R. K., and Cantor, C., 1994. Protein Purification: Principles and Practice (3d ed.). Springer Verlag. M.J. Dunn. 1997. Quantitative two-dimensional gel electrophoresis: From proteins to proteomes Biochem. Soc. Trans. 25: 248-254. R. Aebersold, G.D. Pipes, R.E. Wettenhall, H. Nika, and L.E. Hood. 1990. Covalent attachment of peptides for high sensitivity solid-phase sequence analysis Anal. Biochem. 187: 56-65. W.P. Blackstock and M.P. Weir. 1999. Proteomics: Quantitative and physical mapping of cellular proteins Trends Biotechnol. 17: 121-127. M.J. Dutt and K.H. Lee. 2000. Proteomic analysis Curr. Opin. Biotechnol. 11: 176-179. A. Pandey and M. Mann. 2000. Proteomics to study genes and genomes Nature 405: 837-846. G. K?hler and C. Milstein. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity Nature 256: 495-497. Goding, J. W., 1996. Monoclonal Antibodies: Principles and Practice. Academic Press. R.Y. Tsien. 1998. The green fluorescent protein Annu. Rev. Biochem. 67: 509-544. J.M. Kendall and M.N. Badminton. 1998. Aequorea victoria bioluminescence moves into an exciting era Trends Biotechnol. 16: 216-234. G. Felsenfeld. 1985. DNA Sci. Am. 253: (4) 58-67. J.E. Darnell Jr. 1985. RNA Sci. Am. 253: (4) 68-78. R.E. Dickerson. 1983. The DNA helix and how it is read Sci. Am. 249: (6) 94-111. F.H.C. Crick,. 1954.. The structure of the hereditary material Sci. Am. 191: (4): 54-61.. P. Chambon. 1981. Split genes Sci. Am. 244: (5) 60-71. J.D. Watson and F.H.C. Crick. 1953. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171: 737-738. J.D. Watson and F.H.C. Crick. 1953. Genetic implications of the structure of deoxyribonucleic acid Nature 171: 964-967. M. Meselson and F.W. Stahl. 1958. The replication of DNA in Escherichia coli Proc. Natl. Acad. Sci. U.S.A. 44: 671-682. Saenger, W., 1984. Principles of Nucleic Acid Structure. Springer Verlag. R.E. Dickerson, H.R. Drew, B.N. Conner, R.M. Wing, A.V. Fratini, and M.L. Kopka. 1982. The anatomy of A-, B-, and Z-DNA Science 216: 475-485. Sinden, R. R., 1994. DNA structure and function. Academic Press. Kornberg, A., and Baker, T. A., 1992. DNA Replication (2d ed.). W. H. Freeman and Company. U. Hübscher, H.-P. Nasheuer, and J.E. Syv?oja. 2000. Eukaryotic DNA polymerases: A growing family Trends Biochem. Sci. 25: 143-147. C.A. Brautigam and T.A. Steitz. 1998. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes Curr. Opin. Struct. Biol. 8: 54-63. F. Jacob and J. Monod. 1961. Genetic regulatory mechanisms in the synthesis of proteins J. Mol. Biol. 3: 318-356. S. Brenner, F. Jacob, and M. Meselson. 1961. An unstable intermediate carrying information from genes to ribosomes for protein synthesis Nature 190: 576-581. B.D. Hall and S. Spiegelman. 1961. Sequence complementarity of T2-DNA and T2-specific RNA Proc. Natl. Acad. Sci. U.S.A. 47: 137-146. F.H.C. Crick, L. Barnett, S. Brenner, and R.J. Watts-Tobin. 1961. General nature of the genetic code for proteins Nature 192: 1227-1232. Nirenberg, M., 1968. The genetic code. In Nobel Lectures: Physiology or Medicine (1963-1970), pp. 372 395. American Elsevier (1973). F.H.C. Crick. 1958. On protein synthesis Symp. Soc. Exp. Biol. 12: 138-163. R.D. Knight, S.J. Freeland, and L.F. Landweber. 1999. Selection, history and chemistry: The three faces of the genetic code Trends Biochem. Sci. 24: (6) 241-247. P.A. Sharp. 1988. RNA splicing and genes J. Am. Med. Assoc. 260: 3035-3041. R.L. Dorit, L. Schoenbach, and W. Gilbert. 1990. How big is the universe of exons? Science 250: 1377-1382. M. Cochet, F. Gannon, R. Hen, L. Maroteaux, F. Perrin, and P. Chambon. 1979. Organization and sequence studies of the 17-piece chicken conalbumin gene Nature 282: 567-574. S.M. Tilghman, D.C. Tiemeier, J.G. Seidman, B.M. Peterlin, M. Sullivan, J.V. Maizel, and P. Leder. 1978. Intervening sequence of DNA identified in the structural portion of a mouse b-globin gene Proc. Natl. Acad. Sci. U.S.A. 75: 725-729. Watson, J. D., 1968. The Double Helix. Atheneum. McCarty, M., 1985. The Transforming Principle: Discovering That Genes Are Made of DNA. Norton. Cairns, J., Stent, G. S., and Watson, J. D., 2000. Phage and the Origins of Molecular Biology. Cold Spring Harbor Laboratory. Olby, R., 1974. The Path to the Double Helix. University of Washington Press. Portugal, F. H., and Cohen, J. S., 1977. A Century of DNA: A History of the Discovery of the Structure and Function of the Genetic Substance. MIT Press. Judson, H., 1996. The Eighth Day of Creation. Cold Spring Harbor Laboratory. P. Berg. 1981. Dissections and reconstructions of genes and chromosomes Science 213: 296-303. W. Gilbert. 1981. DNA sequencing and gene structure Science 214: 1305-1312. 执业兽医F. Sanger. 1981. Determination of nucleotide sequences in DNA Science 214: 1205-1210. K.B. Mullis. 1990. The unusual origin of the polymerase chain reaction Sci. Am. 262: (4) 56-65. N. Arnheim and H. Erlich. 1992. Polymerase chain reaction strategy Annu. Rev. Biochem. 61: 131-156. Kirby, L.T. (Ed.), 1997. DNA Fingerprinting: An Introduction. Stockton Press. B.I. Eisenstein. 1990. The polymerase chain reaction: A new method for using molecular genetics for medical diagnosis N. Engl. J. Med. 322: 178-183. K.P. Foley, M.W. Leonard, and J.D. Engel. 1993. Quantitation of RNA using the polymerase chain reaction Trends Genet. 9: 380-386. S. P??bo. 1993. Ancient DNA Sci. Am. 269: (5) 86-92. C.S. Gasser and R.T. Fraley. 1992. Transgenic crops Sci. Am. 266: (6) 62-69. C.S. Gasser and R.T. Fraley. 1989. Genetically engineering plants for crop improvement Science 244: 1293-1299. K. Shimamoto, R. Terada, T. Izawa, and H. Fujimoto. 1989. Fertile transgenic rice plants regenerated from transformed protoplasts Nature 338: 274-276. M.-D. Chilton. 1983. A vector for introducing new genes into plants Sci. Am. 248: (6) 50. G. Hansen and M.S. Wright. 1999. Recent advances in the transformation of plants Trends Plant Sci. 4: 226-231. J. Hammond. 1999. Overview: The many uses of transgenic plants Curr. Top. Microbiol. Immunol. 240: 1-20. J.J. Finer, K.R. Finer, and T. Ponappa. 1999. Particle bombardment mediated transformation Curr. Top. Microbiol. Immunol. 240: 60-80. D.E. Koshland Jr. 1987. Evolution of catalytic function Cold Spring Harbor Symp. Quant. Biol. 52: 1-7. W.P. Jencks. 1987. Economics of enzyme catalysis Cold Spring Harbor Symp. Quant. Biol. 52: 65-73. R.A. Lerner and A. Tramontano. 1988. Catalytic antibodies Sci. Am. 258: (3) 58-70. V.L. Schramm. 1998. Enzymatic transition states and transition state analog design Annu. Rev. Biochem. 67: 693-720. L. Pauling. 1948. Nature of forces between large molecules of biological interest Nature 161: 707-709. G.E. Leinhard. 1973. Enzymatic catalysis and transition-state theory Science 180: 149-154. J. Kraut. 1988. How do enzymes work? Science 242: 533-540. D.J. Waxman and J.L. Strominger. 1983. Penicillin-binding proteins and the mechanism of action of b-lactam antibiotics Annu. Rev. Biochem. 52: 825-869. E.P. Abraham. 1981. The b-lactam antibiotics Sci. Am. 244: 76-86. C.T. Walsh. 1984. Suicide substrates, mechanism-based enzyme inactivators: Recent developments Annu. Rev. Biochem. 53: 493-535. R.M. Stroud. 1974. A family of protein-cutting proteins Sci. Am. 231: (1) 74-88. J. Kraut. 1977. Serine proteases: structure and mechanism of catalysis Annu. Rev. Biochem. 46: 331-358. S. Lindskog. 1997. Structure and mechanism of carbonic anhydrase,Pharmacol. Ther. 74: 1-20. A. Jeltsch, J. Alves, G. Maass, and A. Pingoud. 1992. On the catalytic mechanism of EcoRI and EcoRV: A detailed proposal based on biochemical results, structural data and molecular modelling FEBS Lett. 304: 4-8. H. Yan and M.-D. Tsai. 1999. Nucleoside monophosphate kinases: Structure, mechanism, and substrate specificity Adv. Enzymol. Relat. Areas Mol. Biol. 73: 103-134. E. Lolis and G.A. Petsko. 1990. Transition-state analogues in protein crystallography: Probes of the structural source of enzyme catalysis Annu. Rev. Biochem. 59: 597-630. F.K. Winkler, D.W. Banner, C. Oefner, D. Tsernoglou, R.S. Brown, S.P. Heathman, R.K. Bryan, P.D. Martin, K. Petratos, and K.S. Wilson. 1993. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments EMBO J. 12: 1781-1795. D. Kostrewa and F.K. Winkler. 1995. Mg2+ binding to the active site of EcoRV endonuclease: A crystallographic study of complexes with substrate and product DNA at 2 ? resolution Biochemistry 34: 683-696. A. Athanasiadis, M. Vlassi, D. Kotsifaki, P.A. Tucker, K.S. Wilson, and M. Kokkinidis. 1994. Crystal structure of PvuII endonuclease reveals extensive structural homologies to EcoRV Nat. Struct. Biol. 1: 469-475. M.D. Sam and J.J. Perona. 1999. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease Biochemistry 38: 6576-6586. A. Jeltsch and A. Pingoud. 1996. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems J. Mol. Evol. 42: 91-96. E.R. Kantrowitz and W.N. Lipscomb. 1990. Escherichia coli aspartate transcarbamoylase: The molecular basis for a concerted allosteric transition Trends Biochem. Sci. 15: 53-59. H.K. Schachman. 1988. Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J. Biol. Chem. 263: 18583-18586. Dickerson, R. E., and Geis, I.,1983. Hemoglobin: Structure, Function, Evolution and Pathology. Benjamin Cummings. H. Neurath. 1989. Proteolytic processing and physiological regulation Trends Biochem. Sci. 14: 268-271. W. Bode and R. Huber. 1992. Natural protein proteinase inhibitors and their interaction with proteinases Eur. J. Biochem. 204: 433-451. M.F. Perutz, A.J. Wilkinson, M. Paoli, and G.G. Dodson. 1998. The stereochemical mechanism of the cooperative effects in hemoglobin revisited Annu. Rev. Biophys. Biomol. Struct. 27: 1-34. G.K. Ackers. 1998. Deciphering the molecular code of hemoglobin allostery Adv. Protein Chem. 51: 185-253. G.K. Ackers, M.L. Doyle, D. Myers, and M.A. Daugherty. 1992. Molecular code for cooperativity in hemoglobin Science 255: 54-63. G. Fermi, M.F. Perutz, B. Shaanan, and R. Fourme. 1984. The crystal structure of human deoxyhaemoglobin at 1.74 ? resolution J. Mol. Biol. 175: 159-174. J.V. Kilmartin and L. Rossi-Bernardi. 1973. Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates Physiol. Rev. 53: 836-890. P. Fuentes-Prior, Y. Iwanaga, R. Huber, R. Pagila, G. Rumennik, M. Seto, J. Morser, D.R. Light, and W. Bode. 2000. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex Nature. 404: 518-525. R.W. Herzog and K.A. High. 1998. Problems and prospects in gene therapy for hemophilia Curr. Opin. Hematol. 5: 321-326. R.F. Doolittle. 1981. Fibrinogen and fibrin Sci. Am. 245: (12) 126-135. R.M. Lawn and G.A. Vehar. 1986. The molecular genetics of hemophilia Sci. Am. 254: (3) 48-65. J.H. Brown, N. Volkmann, G. Jun, A.H. Henschen-Edman, and C. Cohen. 2000. The crystal structure of modified bovine fibrinogen Proc. Natl. Acad. Sci. U. S. A. 97: 85-90. M.T. Stubbs, H. Oschkinat, I. Mayr, R. Huber, H. Angliker, S.R. Stone, and W. Bode. 1992. The interaction of thrombin with fibrinogen: A structural basis for its specificity Eur. J. Biochem. 206: 187-195. T.J. Rydel, A. Tulinsky, W. Bode, and R. Huber. 1991. Refined structure of the hirudin-thrombin complex J. Mol. Biol. 221: 583-601. N. Sharon and H. Lis. 1993. Carbohydrates in cell recognition Sci. Am. 268: (1) 82-89. L.A. Lasky. 1992. Selectins: Interpreters of cell-specific carbohydrate information during inflammation Science 258: 964-969. P. Weiss and G. Ashwell. 1989. The asialoglycoprotein receptor: Properties and modulation by ligand Prog. Clin. Biol. Res. 300: 169-184. N. Sharon. 1980. Carbohydrates Sci. Am. 245: (5) 90-116. J.C. Paulson. 1989. Glycoproteins: What are the sugar side chains for? Trends Biochem. Sci. 14: 272-276. R.J. Woods. 1995. Three-dimensional structures of oligosaccharides Curr. Opin. Struct. Biol. 5: 591-598. P. De Weer. 2000. A century of thinking about cell membranes Annu. Rev. Physiol. 62: 919-926. M.S. Bretscher. 1985. The molecules of the cell membrane Sci. Am. 253: (4) 100-108. N. Unwin and R. Henderson. 1984. The structure of proteins in biological membranes Sci. Am. 250: (2) 78-94. J. Deisenhofer and H. Michel. 1989. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis EMBO J. 8: 2149-2170. S.J. Singer and G.L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes Science 175: 720-731. K. Jacobson, E.D. Sheets, and R. Simson. 1995. Revisiting the fluid mosaic model of membranes Science 268: 1441-1442. M.J. Saxton and K. Jacobson. 1997. Single-particle tracking: Applications to membrane dynamics Annu. Rev. Biophys. Biomol. Struct. 26: 373-399. M. Bloom, E. Evans, and O.G. Mouritsen. 1991. Physical properties of the fluid lipid-bilayer component of cell membranes: A perspective Q. Rev. Biophys. 24: 293-397. E.L. Elson. 1986. Membrane dynamics studied by fluorescence correlation spectroscopy and photobleaching recovery Soc. Gen. Physiol. Ser. 40: 367-383. A. Zachowski and P.F. Devaux. 1990. Transmembrane movements of lipids Experientia 46: 644-656. P.F. Devaux. 1992. Protein involvement in transmembrane lipid asymmetry Annu. Rev. Biophys. Biomol. Struct. 21: 417-439. J.R. Silvius. 1992. Solubilization and functional reconstitution of biomembrane components Annu. Rev. Biophys. Biomol. Struct. 21: 323-348. . De Weer. 2000. A century of thinking about cell membranes Annu. Rev. Physiol. 62: 919-926. M.S. Bretscher. 1985. The molecules of the cell membrane Sci. Am. 253: (4) 100-108. N. Unwin and R. Henderson. 1984. The structure of proteins in biological membranes Sci. Am. 250: (2) 78-94. J. Deisenhofer and H. Michel. 1989. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis EMBO J. 8: 2149-2170. S.J. Singer and G.L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes Science 175: 720-731. K. Jacobson, E.D. Sheets, and R. Simson. 1995. Revisiting the fluid mosaic model of membranes Science 268: 1441-1442. J.-L. Popot and D.M. Engleman. 2000. Helical membrane protein folding, stability and evolution Annu. Rev. Biochem. 69: 881-922. S.H. White and W.C. Wimley. 1999. Membrane protein folding and stability: Physical principles Annu. Rev. Biophys. Biomol. Struct. 28: 319-365. F.M. Marassi and S.J. Opella. 1998. NMR structural studies of membrane proteins Curr. Opin. Struct. Biol. 8: 640-648. R. Lipowsky. 1991. The conformation of membranes Nature 349: 475-481. C. Altenbach, T. Marti, H.G. Khorana, and W.L. Hubbell. 1990. Transmembrane protein structure: Spin labeling of bacteriorhodopsin mutants Science 248: 1088-1092. G.D. Fasman and W.A. Gilbert. 1990. The prediction of transmembrane protein sequences and their conformation: An evaluation Trends Biochem. Sci. 15: 89-92. M.J. Welsh and A.E. Smith. 1995. Cystic fibrosis Sci. Am. 273: (6) 52-59. N. Unwin. 1993. Neurotransmitter action: Opening of ligand-gated ion channels Cell 72: 31-41. G.E. Lienhard, J.W. Slot, D.E. James, and M.M. Mueckler. 1992. How cells absorb glucose Sci. Am. 266: (1) 86-91. E. Neher and B. Sakmann. 1992. The patch clamp technique Sci. Am. 266: (3) 28-35. B. Sakmann. 1992. Elementary steps in synaptic transmission revealed by currents through single ion channels Science 256: 503-512. M.M. McGrane, J.S. Yun, Y.M. Patel, and R.W. Hanson. 1992. Metabolic control of gene expression: In vivo studies with transgenic mice Trends Biochem. Sci. 17: 40-44. G.J. Kemp. 2000. Studying metabolic regulation in human muscle Biochem. Soc. Trans. 28: 100-103. H.C. Towle, E.N. Kaytor, and H.M. Shih. 1996. Metabolic regulation of hepatic gene expression Biochem. Soc. Trans. 24: 364-368. J.H. Hofmeyr. 1995. Metabolic regulation: A control analytic perspective J. Bioenerg. Biomembr. 27: 479-490. Atkinson, D. E., 1977. Cellular Energy Metabolism and Its Regulation. Academic Press. M. Ereciska and D.F. Wilson. 1978. Homeostatic regulation of cellular energy metabolism Trends Biochem. Sci. 3: 219-223. J.D. Scott and T. Pawson. 2000. Cell communication: The inside story Sci. Am. 282: (6) 7279. T. Pawson. 1995. Protein modules and signalling networks Nature 373: 573-580. J.H. Hurley and J.A. Grobler. 1997. Protein kinase C and phospholipase C: Bilayer interactions and regulation Curr. Opin. Struct. Biol. 7: 557-565. T. Okada, O.P. Ernst, K. Palczewski, and K.P. Hofmann. 2001. Activation of rhodopsin: New insights from structural and biochemical studies Trends Biochem. Sci. 26: 318-324. R.Y. Tsien. 1992. Intracellular signal transduction in four dimensions: From molecular design to physiology Am. J. Physiol. 263: C723-C728. Loewenstein, W. R., 1999. Touchstone of Life : Molecular Information, Cell Communication, and the Foundations of Life. Oxford University Press. J.R. Knowles. 1991. Enzyme catalysis: Not different, just better Nature 350: 121-124. D. Granner and S. Pilkis. 1990. The genes of hepatic glucose metabolism J. Biol. Chem. 265: 10173-10176. M.M. McGrane, J.S. Yun, Y.M. Patel, and R.W. Hanson. 1992. Metabolic control of gene expression: In vivo studies with transgenic mice Trends Biochem. Sci. 17: 40-44. S.J. Pilkis and D.K. Granner. 1992. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis Annu. Rev. Physiol. 54: 885-909. L.J. Reed and M.L. Hackert. 1990. Structure-function relationships in dihydrolipoamide acyltransferases J. Biol. Chem. 265: 8971-8974. A. Mattevi, G. Obmolova, E. Schulze, K.H. Kalk, A.H. Westphal, A. De Kok, and W.G. Hol. 1992. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex Science 255: 1544-1550. M.W. Gray, G. Burger, and B.F. Lang. 1999. Mitochondrial evolution Science 283: 1476-1481. D.C. Wallace. 1997. Mitochondrial DNA in aging and disease Sci. Am. 277: (2) 40-47. M. Saraste. 1999. Oxidative phosphorylation at the fin de siècle Science 283: 1488-1493. B.E. Shultz and S.I. Chan. 2001. Structures and proton-pumping strategies of mitochondrial respiratory enzymes Ann. Rev. Biophys. Biomol. Struct. 30: 23-65. C.C. Moser, J.M. Keske, K. Warncke, R.S. Farid, and P.L. Dutton. 1992. Nature of biological electron transfer Nature 355: 796-802. R. Huber. 1989. A structural basis of light energy and electron transfer in biology EMBO J. 8: 2125-2147. J. Deisenhofer and H. Michel. 1989. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis EMBO J. 8: 2149-2170. J. Barber and B. Andersson. 1994. Revealing the blueprint of photosynthesis Nature 370: 31-34. Horecker, B. L., 1976.Unravelling the pentose phosphate pathway. In Reflections on Biochemistry (pp. 65 72), edited by A. Kornberg, L. Cornudella, B. L. Horecker, and J. Oro, Pergamon. Levi, P., 1984. Carbon. In The Periodic Table. Random House. E. Melendez-Hevia and A. Isidoro. 1985. The game of the pentose phosphate cycle J. Theor. Biol. 117: 251-263. J. Barber and B. Andersson. 1994. Revealing the blueprint of photosynthesis Nature 370: 31-34. S. Rawsthorne. 1992. Towards an understanding of C3-C4 photosynthesis Essays Biochem. 27: 135-146. S.J. Wakil. 1989. Fatty acid synthase, a proficient multifunctional enzyme Biochemistry 28: 4523-4530. B.B. Rasmussen and R.R. Wolfe. 1999. Regulation of fatty acid oxidation in skeletal muscle Annu. Rev. Nutr. 19: 463-484. C.F. Semenkovich. 1997. Regulation of fatty acid synthase (FAS) Prog. Lipid Res. 36: 43-53. H.S. Sul, C.M. Smas, D. Wang, and L. Chen. 1998. Regulation of fat synthesis and adipose differentiation Prog. Nucleic Acid Res. Mol. Biol. 60: 317-345. G. Wolf. 1996. Nutritional and hormonal regulation of fatty acid synthase Nutr. Rev. 54: 122-123. M.R. Munday and C.J. Hemingway. 1999. The regulation of acetyl-CoA carboxylase: A potential target for the action of hypolipidemic agents Adv. Enzyme Regul. 39: 205-234. J.J. Barycki, L.K. O"Brien, A.W. Strauss, and L.J. Banaszak. 2000. Sequestration of the active site by interdomain shifting: Crystallographic and spectroscopic evidence for distinct conformations of l-3-hydroxyacyl-CoA dehydrogenase J. Biol. Chem. 275: 27186-27196. R.R. Ramsay. 2000. The carnitine acyltransferases: Modulators of acyl-CoA-dependent reactions Biochem. Soc. Trans. 28: 182-186. S. Eaton, K. Bartlett, and M. Pourfarzam. 1996. Mammalian mitochondrial beta-oxidation Biochem. J. 320: 345-357. C. Thorpe and J.J. Kim. 1995. Structure and mechanism of action of the acyl-CoA dehydrogenases FASEB J. 9: 718-725. D.W. Foster. 1984. From glycogen to ketonesand back Diabetes 33: 1188-1199. J.D. McGarry and D.W. Foster. 1980. Regulation of hepatic fatty acid oxidation and ketone body production Annu. Rev. Biochem. 49: 395-420. Y.-M. Zhang, M.S. Rao, R.J. Heath, A.C. Price, A.J. Olson, C.O. Rock, and S.W. White. 2001. Identification and analysis of the acyl carrier protein (ACP) docking site on beta-ketoacyl-ACP synthase III J. Biol. Chem. 276: 8231-8238. C. Davies, R.J. Heath, S.W. White, and C.O. Rock. 2000. The 1 8 ? crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from Escherichia coli Structure Fold Des. 8: 185-195. R.M. Denton, K.J. Heesom, S.K. Moule, N.J. Edgell, and P. Burnett. 1997. Signalling pathways involved in the stimulation of fatty acid synthesis by insulin Biochem. Soc. Trans. 25: 1238-1242. J.K. Stoops, S.J. Kolodziej, J.P. Schroeter, J.P. Bretaudiere, and S.J. Wakil. 1992. Structure-function relationships of the yeast fatty acid synthase: Negative-stain, cryo-electron microscopy, and image analysis studies of the end views of the structure Proc. Natl. Acad. Sci. USA 89: 6585-6589. T.M. Loftus, D.E. Jaworsky, G.L. Frehywot, C.A. Townsend, G.V. Ronnett, M.D. Lane, and F.P. Kuhajda. 2000. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors Science 288: 2379-2381. Y.M. Torchinsky. 1989. Transamination: Its discovery, biological and chemical aspects Trends Biochem. Sci. 12: 115-117. R.C. Eisensmith and S.L.C. Woo. 1991. Phenylketonuria and the phenylalanine hydroxylase gene Mol. Biol. Med. 8: 3-18. H.L. Levy. 1989. Nutritional therapy for selected inborn errors of metabolism J. Am. Coll. Nutr. 8: 54S-60S. A.L. Schwartz and A. Ciechanover. 1999. The ubiquitin-proteasome pathway and pathogenesis of human diseases Annu. Rev. Med. 50: 57-74. J. Kim and D.C. Rees. 1989. Nitrogenase and biological nit开云app安装不了怎么办 rogen fixation, Biochemistry 33: 389-397. P. Christen, R. Jaussi, N. Juretic, P.K. Mehta, T.I. Hale, and M. Ziak. 1990. Evolutionary and biosynthetic aspects of aspartate aminotransferase isoenzymes and other aminotransferases Ann. N. Y. Acad. Sci. 585: 331-338. G. Schneider, H. Kack, and Y. Lindqvist. 2000. The manifold of vitamin B6 dependent enzymes Structure Fold Des. 8: R1-R6. S.G. Rhee, P.B. Chock, and E.R. Stadtman. 1989. Regulation of Escherichia coli glutamine synthetase Adv. Enzymol. Mol. Biol. 62: 37-92. D. Shemin. 1989. An illustration of the use of isotopes: The biosynthesis of porphyrins Bioessays 10: 30-35. M.Y. Galperin and E.V. Koonin. 1997. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity Protein Sci. 6: 2639-2643. A. Jordan and P. Reichard. 1998. Ribonucleotide reductases Annu. Rev. Biochem. 67: 71-98. J.E. Seegmiller. 1989. Contributions of Lesch-Nyhan syndrome to the understanding of purine metabolism J. Inherited Metab. Dis. 12: 184-196. D.E. Vance and H. Van den Bosch. 2000. Cholesterol in the year 2000 Biochim. Biophys. Acta 1529: 1-8. M.S. Brown and J.L. Goldstein. 1986. A receptor-mediated pathway for cholesterol homeostasis Science 232: 34-47. M.S. Brown and J.L. Goldstein. 1984. How LDL receptors influence cholesterol and atherosclerosis Sci. Am. 25l: (5) 58-66. L. Chan. 1992. Apolipoprotein B, the major protein component of triglyceride-rich and low density lipoproteins J. Biol. Chem. 267: 25621-25624. A. Endo. 1992. The discovery and development of HMG-CoA reductase inhibitors J. Lipid Res. 33: 1569-1582. S. Hakomori.. 1986. Glycosphingolipids Sci. Am. 254: (5) 44-53. A. Kornberg. 1988. DNA replication J. Biol. Chem. 263: 1-4. R.E. Dickerson. 1983. The DNA helix and how it is read Sci. Am. 249: (6) 94-111. J.C. Wang. 1982. DNA topoisomerases Sci. Am. 247: (1) 94-109. T. Lindahl. 1993. Instability and decay of the primary structure of DNA Nature 362: 709-715. C.W. Greider and E.H. Blackburn. 1996. Telomeres, telomerase, and cancer Sci. Am. 274: (2) 92-97. N.A. Woychik. 1998. Fractions to functions: RNA polymerase II thirty years later Cold Spring Harbor Symp. Quant. Biol. 63: 311-317. R. Losick. 1998. Summary: Three decades after sigma Cold Spring Harbor Symp. Quant. Biol. 63: 653-666. J.E. Darnell Jr.. 1985. RNA Sci. Am. 253: (4) 68-78. T.R. Cech. 1986. RNA as an enzyme Sci. Am. 255: (5) 64-75. P.A. Sharp. 1994. Split genes and RNA splicing Cell 77: 805- 815. T.R. Cech. 1990. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena Biosci. Rep. 10: 239-261. C. Guthrie. 1991. Messenger RNA splicing in yeast: Clues to why the spliceosome is a ribonucleoprotein Science 253: 157-163. A.E. Dahlberg. 2001. Ribosome structure: The ribosome in action Science 292: 868-869. M. Ibba, A.W. Curnow, and D. S?ll. 1997. Aminoacyl-tRNA synthesis: Divergent routes to a common goal Trends Biochem. Sci. 22: 39-42. B.K. Davis. 1999. Evolution of the genetic code Prog. Biophys. Mol. Biol. 72: 157-243. P. Schimmel and L. Ribas de Pouplana. 2000. Footprints of aminoacyl- tRNA synthetases are everywhere Trends Biochem. Sci. 25: 207-209. G.J. Kemp. 2000. Studying metabolic regulation in human muscle Biochem. Soc. Trans. 28: 100-103. G.E. Lienhard, J.W. Slot, D.E. James, and M.M. Mueckler. 1992. How cells absorb glucose Sci. Am. 266: (1) 86-91. | ||