在本实验中可见,随着供肝冷保存时间的延长,供肝中NFκB水平显著增高。其机制可能是随冷保存时间延长,内皮细胞和Kupffer细胞内氧自由基增多,低氧及氧化应激介导NFκB激活,调控TNFα、IL1β表达增高[11]。再灌注后各组肝组织中NFκB以及血清TNFα、IL1β水平均较冷保存期明显增高,并随着冷保存时间的延长活性增强。TUNEL显示肝细胞凋亡加重,反映肝损伤的酶学指标(ALT、AST)亦明显升高,表明再灌注后NFκB产生爆发式激活,转录大量TNFα、IL1β,进一步加重供肝的损伤。其机制可能与移植肝再灌注后呼吸爆发、氧化应激大大增强有关,而其转录产物如TNFα、IL1β又可进一步激活NFκB,形成正反馈。
可见,供肝的冷保存和再灌注是两个既独立又关联的过程。供肝的NFκB在冷保存期间就已经受到预激,并表达多种炎症介质,成为再灌注损伤的始动因子;在再灌注阶段NFκB的效应迅速放大,进一步激发并维持炎症反应,损伤供肝[12]。其中TNFα在肝损伤中发挥重要作用,可以直接或诱导肝细胞坏死、凋亡[13];而IL1β诱导Kuppfer细胞产生TNFα,上调中性粒细胞产生更多的自由基。二者的协同作用引起血管扩张和白细胞介导的组织坏死,最终导致器官衰竭。NFκB与细胞凋亡的关系密切, 其参与多种凋亡相关基因的转录调控, 具有抑制细胞凋亡作用及促细胞凋亡的双向作用,可能与不同亚基的转录有关,可以不通过炎性因子的作用,直接导致细胞凋亡[14]。在本实验中NFκB显示出促进肝细胞凋亡的作用。
总之,随着移植肝冷保存时间的延长,肝内NFκB存在不同程度的预激,再灌注后大量活化的NFκB通过上调TNFα、IL1β的表达直接或间接导致移植肝的损伤。这可能是移植肝再灌注损伤的重要机制,而抑制NFκB可能是一条减轻移植肝再灌注损伤的有效方法。
【参考文献】
[1]ARAN CR, ISMAIL BM, FERNANDO R, et al. Past and future approaches to ischemiareperfusion lesion associated with liver transplantation [J]. Life Sci, 2006, (79):18811894.
[2]严律南. 现代肝脏移植学 [M]. 北京:人民卫生出版社, 2004:286.
[3]NANASHIMA A, PILLAY P, VERRAN DJ. Analysis of initial poor graft function after orthotopic liver transplantation: experience of an Australian single liver transplantation center [J]. Transpl Proc, 2002, 34:12311235.
[4]刘永峰. 肝脏移植 [M]. 第3版. 北京:人民卫生出版社, 2004:219240.
[5]BUSUTTIL RW, FARMER DG, YERSIZ H, et al. Analysis of longterm outcomes of 3200 liver transplantations over two decades: a singlecenter experience [J]. Ann surg, 2005, 241(6):905916.
[6]MOSHER B, DEAN R, HARKEMA J, et al. Inhibition of Kuffer cells reduced CXC chemokine production and liver injury [J]. J Surg Res, 2001, 99(2):201210.
[7]孟珂伟,吕毅,于良. 直视下袖套法加套入式吻合大鼠全血供肝移植模型建立 [J]. 中国修复重建外科杂志, 2005, 5(19):389391.
[8]YANG X, WANG L, ZENG H, et al. Effect s of simvastatin on NFkappaBDNA binding activity and monocyte chemoattractant protein1 expression in a rabbit model of atherosclerosis [J]. J Huazhong Univ Sci Technolog (Med Sci), 2006, 26(2):194198医.学.全.在.线www.lindalemus.com.
[9]MATTERN J, KOOMAGI R, VOLM M. Association of vascular endothelial growth factor expression with intratumoral microvessal density and tumoral proliferation in human epidermoid lung carcinoma [J]. Cancer, 1996, 73(2):931934.
[10]HAYDEN MS, GHOSH S. Shared principles in NFκB signaling [J]. Cell, 2008, 132(3):344362.
[11]MONTALVOJAVE EE, ESCALANTETATTERSFIELD T, ORTEGASALGADO JA, et al. Factors in the pathophysiology of the liver ischemiareperfusion injury [J]. J Surg Res, 2008, 147(1):153159.
[12]ALEX B. LENTSCH, ATSUSHI KATO, HIROYUKI YOSHIDOME, et al. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury [J]. Hepatology, 2000, 32(2):169173.
[13]GIAKOUSTIDIS AE, GIAKOUSTIDIS DE, KOLIAKOU K, et al. Inhibition of intestinal ischemia/repurfusion induced apoptosis and necrosis via downregulation of the NFkappa B, cJun and caspace3 expression by epigallocatechin3gallate administration [J]. Free Radical Res, 2008, 42(2):180188.
[14]CHEN X, KANDASAMY K, SRIVASTAVA RK. Differential roles of RelA and CRel subunits of nuclear factor kappa B in tumor necrosis factorrelated apoptosisinducing ligand signaling [J]. Cancer Res, 2003; 63:10591066.