微 信 题 库 搜 索
理论教学
内科学
风湿病学 神经病学 免疫与健康
儿科学 老年医学 更多
外科学
皮肤性病学 普通外科学 烧伤外科学
神经外科学 外科学总论 更多
其它科目
基础学科 临床专科 内科疾病
内科诊疗 外科诊疗 专科诊疗
外科疾病 专科疾病 临床专科疾病
 医学全在线 > 理论教学 > 基础学科 > 生理学 > 正文
神经元活动的一般规律:神经系统神经元,神经纤维突触神经递质.受体学说.神经营养性作用
来源:医学全在线 更新:2007/8/24 字体:

 

  3.氨基酸类 现快明确存在氨基酸类递质,例如谷氨酸门冬氨酸、甘氨酸和γ-氨基丁酸。

  在脑脊髓内谷氨酸含量很多,分布很广,但相对来看,大脑半球和脊髓背侧部分含量较高。用电生物微电泳法将谷氨酸作用于皮层神经元和脊髓运动神经地,可引致突触后膜出现类似兴奋性突触后电位的反应,并可导致神经元放电。由此设想,谷氨酸可能是感觉传入神经纤维(粗纤维类)和大脑皮层内的兴奋型递质。

  用电生理微电泳法将甘氨酸作用于脊髓运动神经元,可引致突触后膜出现类似抑制性突触后电位的反应。闰绍细胞轴突末梢释放的递质就是甘氨酸,它对运动神经元起抑制作用。

  γ-氨基丁酸在大脑皮层的浅层和小脑皮层的浦肯野细胞层含量较高。用电生理微电泳法将γ-氨基丁酸作用于大脑皮层神经元和前庭外侧核神经元(直接受小脑皮层浦肯野细胞支配),可引致突触后膜超极化。由此设想,γ-氨基丁酸可能是大脑皮层部分神经元和小脑皮层浦肯野细胞的抑制性递质。此外,纹状体-黑质的纤维,也是释放γ-氨基西酸递质的。

  上述的抑制是突触后膜发生超极化而发生的,因此是突触后抑制。所以甘氨酸和γ-氨基丁酸均是突触后抑制的递质。已知,γ-氨基丁酸也是突触前抑制的递质;当γ-氨基丁酸作用于轴突末梢时可引致末梢支极化,使末梢在冲动抵达时递质释放量减少,从而产生抑制效应(参见第二节)。γ-氨基丁酸对细胞体膜产生超极化,而对末梢轴突膜却产生去极化,其机制尚不完全清楚。有人认为,γ-氨基丁酸的作用是使膜对CI-的通透性增升高;在细胞体膜对CI-的通透性升高时,由于细胞外CI-浓度比细胞内CI-浓度高,CI-由细胞外进入细胞内,因此产生超极化;在末梢轴突膜对CI-通透性升高时,由于轴浆内CI-浓度比轴突外CI-高,CI-由轴突内流向轴突外,因此产生去极化。所以γ-氨基丁酸的作用是使CI-通透性升高,造成超极化还是去极化,取决于细胞内外CI-的浓度差。

  4.肽类早已知道神经元能分泌肽类化学物质,例如视上核和室旁核神经元分泌升压素(九肽)和催产素(九肽);下丘脑内其他肽能神经元能分泌多种调节腺垂体活动的多肽,如促甲状腺释放激素(TRH,三肽)、促性腺素释放激素(GnRH,十肽)、生长抑素(GHRIH,十四肽)等。由于这些肽类物质在分泌后,要通过血液循环才能作用于效应细胞,因此称为神经激素。但现已知,这些肽类物质可能还是神经递质。例如,室旁核有向脑干和脊髓投射的纤维,具有调节交感和副交感神经活动的作用(其递质为催产素),并能抑制痛觉(其递质为升压素)。在下丘脑以外脑区存在TRH和相应的受体,TRH能直接影响神经元的放电活动,提示TRH可能是神经递质。

  脑内具有吗啡样活性的多肽,称为阿片样肽。阿片样肽包括β-内啡肽、脑啡肽和强啡肽三类。脑啡肽是五肽化合物,有甲硫氨酸脑啡肽(M-ENK)和亮氨酸脑啡肽(L-ENK)两种。脑啡肽与阿片受体常相伴而存在,微电泳啡肽可命名大脑皮层、纹状体和中脑导水管周围灰质神经元的放电受到抑制。脑啡肽在脊髓背角胶质区浓度很高,它可能是调节痛觉纤维传入活动的神经递质。

  脑内还有胃肠肽存在,例如胆囊收缩素(CCK)、促胰液素、胃泌素、胃动素、血管活性肠肽、胰高血糖素等。CCK有抑制摄食行为的作用。许多胆碱能神经元中含有血管活性肠肽,它可能具有加强乙酰胆碱作用的功能。此外,脑内还有其他肽类物质,例如P物质、神经降压素、血管紧张素Ⅱ等。P物质是十一肽,它可能是第一级感觉神经元(属于细纤维类)释放的兴奋性递质,与痛觉传入活动有关。神经降压素在边缘系统中存在。血管紧张素Ⅱ的主要作用可能在于调节单受类纤维的递质释放。

  5.其他可能的递质近来年研究指出,一氧化氮具有许多神经递质的特征。某些神经元含有一氧化氮合成酶,该酶能使精氨酸生成一氧化氮。生成的一氧化氮从一个神经元弥散到另一神经元中,而后作用于鸟苷酸环化酶并提高其活力,从而发挥出生理作用。因此,一氧化氮是一个神经元间信息沟通的传递物质,但与一般递质有区别:①它不贮存于突触小泡中;②它的释放不依赖于出胞作用,而是通过弥散;③它不作用于靶细胞膜上的受体蛋白,而是作用于鸟苷酸环化酶。一氧化氮与突触活动的可塑性可能有关,因为用一氧化氮合成酶抑制剂后,海马的第时程增强效应被完全阻断(参见第六节中“学习和记忆的机制”)。此外,组织胺也可能是脑内的神经递质。

  (三)递质与调质的概念

  递质是指神经末梢释放的特殊化学物质,它能作用于支配的神经元或效应细胞膜上的受体,从而完成信息传递功能。调质是指神经元产生的另一类化学物质,它能调节信息传递的效率,增强或削弱递质的效应。但是也有人把递质概念规定得非常严格,认为只有作用于膜受体后导致离子通道开放从而产生兴奋或抑制的化学物质才能称为递质;其他一些作用于膜受体后通过第二信使转而改变膜的兴奋性或其它递质释放的化学物质,均应称为调质。根据后一种观点,递质为数不多,氨基酸类物质是递质,神经肌接头部位释放的乙酰胆碱也是递质,而肽类物质一般均属于调质。但是一般来说,递质与调质无明确划分的界限,调质是从递质中派生出来的概念,不少情况下递质包含调质;前文就没有把两者严格区分开来,统称为递质。

  (四)递质的共存

  长期来认为,一个神经元内只存在一种递质,其全部神经末梢均释放同一种递质。这一原则称为戴尔原则(Dale’s principle)。近来来,通过免疫组织化学方法观察到,一个神经元内可存在两种或两种以上递质(包括调质),因此认为戴尔原则并不正确。但是戴尔的原先观点认为,一个神经元的全部神经末梢均释放相同的递质;他并没有限定一个神经元只能含一种递质。因此,戴尔的观点还是对的,而戴尔原则则是需要修改的。

  在无脊椎动物的神经元中,观察到多巴胺和5-羟色胺递质可以共存。在高等动物的交感神经节神经节发育过程中,去甲肾上腺素和乙酰胆碱可以共存。此外,在大鼠延髓的神经元中观察到5-羟色胺和P物质共存;在上颈交感神经节中神经元中观察到去甲肾上腺素和脑啡肽共存。有人认为肽类递质可能都是与其他递质共存的。递质共存的生理意义,目前尚未清楚了解;可能两种递质在同时释放后起着不同的生理作用,有利于发挥突触传递作用。

  (五)递质的合成、释放和失活

  1.递质的合成 乙酰胆碱是由胆碱和乙酰辅酶A在胆碱乙酰移位酶(胆碱乙酰化酶)的催化作用下合成的。由于该酶存在于胞浆中,因此乙酰胆碱在胞浆中合成,合成后由小泡摄取并贮存起来。去甲肾上腺素的合成以氨酸为原料,首先在酪氨酸羟化酶的催化作用下合成多巴,再在多巴脱羧酶(氨基酸脱竣酶)作用下合成多巴胺(儿茶酚乙胺),这二步是在胞浆中进行的;然后多巴胺被摄取入小泡,在小泡中由多巴胺β羟化酶催化进一步合成去甲肾上腺素,并贮存于小泡内。多巴胺的合成与去甲肾上腺素揆民前二步是完全一样的,只是在多巴胺进入小泡后不再合成去甲肾上腺素而已,因为贮存多巴胺的小铴内不含多巴胺β羟化酶。5-羟色胺的合成以色氨酸为原料,首先在色氨酸羟化酶作用下合成5-羟色氨酸,再在5-羟色胺酸脱竣酶(氨基酸脱竣酶)作用下将5-羟色氨酸合成5-羟色胺,这二步是在胞浆中进行的;然后5-羟色胺被摄取入小泡,并贮存于小泡内。γ-氨基丁酸是谷氨酸在谷氨酸脱羧催化作用下合成的。肽类递质的全盛与其他肽类激素的合成完全一样,它是由基因调控的,并在核糖体上通过翻译而合成的。

  2.递质的释放当神经冲动抵达末梢时,末梢产生动作电位和离子转移Ca2+由膜外进入膜内,使一定数量的小泡与突触前膜紧贴融合起来,然后小泡与突触前膜粘合处出现破裂口,小泡内递质和其他内容物就释放到突触间隙内。突触前膜释放递质的过程,称为出胞(exocytosis)或胞裂外排。在这一过程中,Ca2+的转移很重要。如果减少细胞外Ca2+浓度,则递质释放就受到抑制;而增加细胞外Ca2+的浓度则递质释放增加。这一事实说明,Ca2+由膜外进入膜内的数量多少,直接关系到递质的释放量;Ca2+是小泡膜与突触前膜紧贴融合的必要因素。一般认为,Ca2+可能有两方面的作用:①降低轴浆的粘度,有利于小泡的移动;②消除突触前膜内的负电位,便于小泡与突触前膜接触而发生融合。小泡破裂把递质和其他内容物释放到突触间隙时,其外壳仍可留在突触前膜内(也可与突触前膜融合,成为突触前膜的组成部分),以后仍旧可以重新恢复原样,继续合成并贮存递质(图10-9)。

图10-9 突触处递质释放过程

  3.递质的失活 进入突触间隙的乙酰胆碱作用于突触后膜发挥生理作用后,就被胆碱酯酶水解成胆碱和乙酸,这样乙酰胆碱就被破坏而推动了作用,这一过程称为失活。去甲肾上腺素进入突触间隙并发挥生理作用后,一部分被血液循环带走,再在肝中被破坏失活;另一部分在效应细胞内由儿茶酚胺内由儿茶酚胺位甲基移位酶和单胺氧化酶的作用而被破坏失活;但大部分是由突触前膜将去甲肾上腺素再摄取,回收到突触前膜处的轴浆内并重新加以利用。多巴胺的失活与去甲肾上腺素的失活相似,它也是由儿茶酚胺氧位甲基移位酶和单胺氧化酶的作用而被破坏失活。突触前膜敢能再摄取多巴胺加以重新利用。5-羟色胺的失活也与去甲肾上腺素的失活相似,单胺氧化酶等能使5-羟色胺降解破坏,突触前膜也能再摄取5-羟色胺加以重新利用。氨基酸递质在发挥作用后,能被神经元和神经胶质再摄取而失活。肽类递质的失活是依靠酶促降解,例如通过氨基肽酶、羧基肽酶和一些内肽酶的降解而失活。

  (六)受体学说

  1.胆碱能受体 上世纪末发现阿托品能阻断副交感神经节后纤维对效应器的作用,当时认为效应器具具有一种接受物质,阿托品与接受物质结合后就阻断了副交感神经的作用。研究证实了这一设想,例如刺激支配颌下腺的副交感神经则唾液分泌量增加,如果先用阿托品后再刺激神经则唾液分泌量不再增加,而此时末梢乙酰胆碱的释放量并不见减少。这说明阿托品不影响神经末梢递质的释放过程,而是直接作用于效应器上。效应器上的接受物质后来就称为受体。

  递质的受体一般是指突触后膜或效应器细胞膜上的某些特殊部分,神经递质必须通过与受体相结合才能发挥作用。受体的本质和发挥作用和机制已在第二章详述。如果受体事先被药物结合,则递质就很难再与受体相结合,于是递质就不能发挥作用。这种能与受体相结合,从而占据受体或改变受体的空间结构形式,使递质不以发挥作用的药物称为受体阻断剂。

  受体阻断剂 的不断发现,对递质与受体的作用关系有了更多的了解。前文述及乙酰胆碱有两种作用,实际上是由于存在两种不同的乙酰胆碱能受体而形成的。一种受体广泛存在于副交感神经节后纤维支配的效应细胞上,当乙酰胆碱与这类受体结合后就产生一系列副交感神经末梢兴奋的效应,包括心脏活动的抑制、支气管平滑肌的收缩、胃肠平滑肌的收缩、膀胱逼尿肌的收缩、虹膜环形肌的收缩、消化腺分泌的增加等。这类受体也能与毒蕈碱相结合,产生相似的效应。因此这类受体称为毒蕈碱受体(M型受体,muscarinic receptor),而乙酰胆碱与之结合所产生的效应称为毒蕈碱样作用(M样作用)。阿托品是M型受体阻断剂,它仅能和M型受体结合,从而阻断乙酰胆碱的M样作用。

  另一种胆碱能受体存在于交感和副交感神经节神经元的突触后膜和神经肌接头的终板膜上,当乙酰胆碱与这类受体结合后就产生兴奋性突触后电位和终板电位,导致节神经元和骨骼肌的兴奋。这类受体也能与菸碱相结合,产生相似的效应。因此这类受体也称为菸碱型受体(N型受体,nicotinic receptor),而乙酰胆碱与之结合所产生的效应称为菸碱样作用(N样作用)。

  通过采用不同受体阻断剂的研究,现已证明M型和N型受体均可进一步分出向种亚型。M型受体至少已分出M1、M2和M3三种亚型。M1受体主要分布在神经组织中;M2受体主要分布在心脏,在神经和平滑肌上也有少量分布;M3受体主要分布在外分泌腺上,神经和平滑肌也有少量分布。N型受体可分出N1和N2两种亚型。神经节神经元突触后膜上的受体为N1受体,终板膜上的受体为N2受体。简箭毒能阻断N1和N2受体的功能,六烃季铵主要阻断N1受体的功能,十烃季铵主要阻断N2受体的功能,从而阻断乙酰胆碱的N样作用。

  支配汁腺的交感神经和骨骼肌的交感舒血管纤维,其递质也是乙酰胆碱;由于阿托品能阻断其作用,所以属于M型受体。

  2.肾上腺素能受体 多数的交感神经节后纤维释放的递质是去甲肾上腺素,其对效应器的作用既有兴奋性的,也有抑制性的。效应不同的机制是由于效应器细胞上的受体不同。能与儿茶酚胺(包括去甲肾上腺素、肾上腺素等)结合的受体有两类,一类为α型肾上腺素能受体(简称α受体),另一类为β型肾上腺素能受体(简称β受体)。儿茶酚胺与α受体结合的产生的平滑肌效应主要是兴奋性的,包括血管收缩、子宫收缩、虹膜辐射状肌收缩等;但也有抑制性的,如小肠舒张。儿茶酚胺与β受体结合后产生的平滑肌效应是抑制性的,包括血管舒张、子宫舒张、小肠舒张、支气管舒张等;但产生的心肌效应却是兴奋性的。有的效应器仅有α受体,有的仅有β受体,有的α和β受体均有(表10-3)。目前知道,心肌细胞上除有β受体外,也有α受体,但受体的作用较明显。例如,心肌α受体兴奋可引致收缩力加强,但其作用比β受体兴奋的作用要弱;而且心肌β受体兴奋可引致心率加快,而α受体却不能加快心率。

表10-3 肾上腺素能受体的分布及效应

效应器 受体 效应
眼虹膜辐射状肌 α1 收缩(扩瞳)
睫状体肌 β2 舒张
心窦房结 β1 心率加快
房室传导系统 β1 传导加快
心肌 α1,β1 收缩加强
血管
冠状血管 α1 收缩
β2(主要) 舒张
皮肤粘膜血管 α1 收缩
骨骼肌血管 α 收缩
β2(主要) 舒张
脑血管 α1 收缩
腹腔内脏血管 α1(主要) 收缩
β2 舒张
唾液腺血管 α1 收缩
支气管平滑肌 β2 舒张
胃肠
胃平滑肌 β2 舒张
小肠平滑肌 α2 舒张(可能是胆碱能纤维的突触前受体,调制乙酰胆碱的释放)
β2 舒张
括约肌 α1 收缩
膀胱
逼尿肌 β2 舒张
三角区和括约肌 α1 收缩
子宫平滑肌 α1 收缩(有孕子宫)
β2 舒张(无孕子宫)
竖毛肌 α1 收缩
糖酵解代谢 β2 增加
脂肪分解代谢 β1 增加

  α和β受体不仅对交感神经末梢释放递质起反庆,也对血液中存在的儿茶酚胺(由肾上腺髓质分泌或注射的药物)起反应。去甲肾上腺素对α受体的作用强,对β受体的作用较弱;肾上腺素对α和β受体的作用都强;异丙肾上腺素主要对β受体有强烈作用。如在动物实验中观察血压的变化,见到注射去甲肾上腺素后血压上升,这是由于α受体被激活引致广泛血管收缩而形成的;如注射异丙肾上腺素,则见到血压下降,这是由于β受体被激海参引致广泛血管舒张而形成的;如注射肾上腺素,则血压先升高后下降,这是由于α和β受体均被激活,引致广泛血管先收缩后舒张而形成的。如果,进一步采用不同的受体阻断剂进行实验,见到α受体阻断剂酚妥拉明可以消除去甲肾上腺素和肾上腺素的升压效应,但不影响肾上腺素和异丙肾上腺素的降压效应;而β受体阻断剂普萘洛尔(propranolol)可以消除肾上腺素和异丙肾上腺素的降压效应,但不影响去甲肾上腺素和肾上腺素的升压效应。由此说明,确实存在两种不贩肾上腺素能受体,即α受体和β受体,两者能分别被特异的受体阻断剂所阻断。

  β受体阻断剂已应用于临床。例如,心绞痛患者应用普萘洛尔可以降低心肌的代谢和活动,得到治疗的效果。但普萘洛尔阻断β受体的作用很广泛,应用后可同时此致支气管痉挛,对伴有呼吸系统疾病的患者有危险性。研究发现,有些β受体阻断剂主要阻断心肌的β受体,而对支气管平滑肌的β受体阻断作用很小,例如阿替洛尔(atenilol)、心得宁(practolol);有些受体阻断剂对心肌的β受体阻断作用极小,而对支气管平滑肌的β受体阻断作用却很强,例如心得乐(butoxamine)。由此认为,β受体可分别分为β1和β2两个亚型,其分布及效应见表10-3。在伴有呼吸系统疾病的患者,应采用阿替洛尔,以免发生支气管痉挛。

上一页  [1] [2] [3] [4] [5] [6] 下一页

相关文章
第二节 心肌的生物电现象和生理特性
病理生理学的内容
第一节 女性一生各阶段的生理特点
电生理检查(electrophysiological examin
第三章 血液总论
   触屏版       电脑版       全站搜索       网站导航   
版权所有:医学全在线(m.med126.com)
   触屏版       电脑版       搜索   
版权所有:医学全在线(m.med126.com)
网站首页
频道导航
医学论坛
返回顶部
Baidu
map