物质溶解度的大小与很多因素有关,主要决定于溶质和溶剂的本性以及外界的温度和压力。
一、 固体在液体中的溶解度
温度对固体物质溶解度的影响,可以通过实验绘成的溶解度曲线来表示。图1-1是几种固体盐类在水中的溶解度曲线。
图1-1 溶解度曲线
从图1-1中可以看出,大多数固体物质的溶解度随温度升高而增大。个别物质如醋酸钙的溶解度,随温度的升高反而减小。还可看到硫酸钠的溶解度曲线,在32.4℃时出现了一个转折点。这是因为32.4℃左右时,硫酸钠的存在形式不同。在32.4℃以下,与饱和溶液呈平衡的固体是含结晶水的硫酸钠Na2SO4·10H2O,随温度升高溶解度增大。在32.4℃以上,与饱和溶液呈平衡的固体是无水硫酸钠Na2SO4,随温度上升而溶解度减小。
利用在不同温度下物质的溶解度不同这一性质,可以进行物质的提纯以除去其中杂质。在实际工作中,常将要是纯的物质先加热溶解于适当的溶剂中,使其成为饱和或接近饱和溶液,趁热滤去不溶性杂质,然后将溶液冷却,这时因物质的溶解度减小,势必从溶液中析出结晶,而可溶性杂质由于含量少,远未达到饱和而留在母液中。最后过滤,使析出的结晶与母液分离而得到较纯物质。这种操作称为重结晶。
值得注意的是有些物质在温度降低时,溶液中所含溶质的量虽超过了该温度下饱和溶液所含溶质的量,溶质也不析出,这种溶液称为过饱和溶液。过饱和溶液是不稳定的体系,稍一振荡或投入一小颗粒结晶,多余的溶质立即从溶液中析出而成为饱和溶液。医学.全在线www.lindalemus.com
二、气体在液体中的溶解度
气体的溶解平衡是指在密闭容器中,溶解在液体中的气体分子与液体上面的气体分子保持平衡。溶解达平衡时,气体在液体中的浓度就是气体的溶解度。通常用1体积液体中所能溶解气体的体积表示。表1-1是一些气体在水中的溶解度。
表1-1 一些气体在水中的溶解度
温度/℃ | O2 | H2 | N2 | CO2 | HCL | NH3 |
0 | 0.0489 | 0.0215 | 0.0235 | 1.713 | 507 | 1176 |
20 | 0.0310 | 0.0182 | 0.0155 | 0.878 | 442 | 702 |
30 | 0.0261 | 0.0170 | 0.0134 | 0.665 | 413 | 586(28℃) |
35 | 0.0244 | 0.0167 | 0.0126 | 0.592 | —— | —— |
从表1-1中可以明显地看出,温度升高,气体的溶解度减小。也可以看出,不同的气体在水中的溶解度相差很大,这与气体及溶剂的本性有关。H2,O2,N2等气体在水中的溶解度较小,因为这些气体在溶解过程中不与水发生化学反应,称为物理溶解。而CO2,HCL,NH3等气体在水中的溶解度较大,因为这些气体在溶解过程中与水发生了化学反应,称为化学溶解。
气体在液体中的溶解,除与气体的本性、温度有关外,压力对气体的溶解度的影响也比较大。压力和分压的单位是帕(或帕斯卡,符号Pa),通常用千帕(符号kPa)表示。101.325kPa(或101325Pa)相当于过去1atm(1大气压),133.32Pa相当于1mmHg,作为非国际单位制的atm和mmHg本书不再使用。