随机单位组设计资料和t检验中的成对资料相类似,不同之处是成对资料只二个组,而随机单位组设计有三个或更多的组,因而要比较的均数多于两个,它是比完全随机设计更精细的一种设计方法。这样设计的资料作方差分析的检验效能较高,因为在此种设计的方差分析表中多了一个分析内容──单位组间的变异,致使误差均方有一定程度的缩小。下面用例子说明分析过程。
例8.3 以缺乏核黄素的饲料喂大白鼠,一周后测尿中氨基氮的三天排出量,并与限食量组和不限食量组对比,结果见表8.8,试比较三组均数间有无显著差别。医.学.全.在.线.网.站.提供
表8.8 三组白鼠在进食一周后尿中氨基氮的三天排出量(mg)
单位组号 | 核黄素缺乏组 | 限食量组 | 不限食量组 | 小计 | x |
1 | 5.98 | 3.32 | 8.16 | 17.46 | 5.820 |
2 | 3.63 | 3.39 | 5.57 | 12.59 | 4.197 |
3 | 2.40 | 2.66 | 5.25 | 10.31 | 3.437 |
4 | 4.68 | 3.33 | 7.32 | 15.33 | 5.110 |
5 | 3.81 | 2.73 | 6.76 | 13.30 | 4.433 |
6 | 7.03 | 5.13 | 5.13 | 17.29 | 5.763 |
7 | 4.71 | 3.36 | 5.07 | 13.14 | 4.380 |
8 | 4.69 | 4.29 | 4.62 | 13.60 | 4.533 |
9 | 3.91 | 3.18 | 9.26 | 16.35 | 5.450 |
10 | 6.51 | 8.45 | 11.46 | 26.42 | 8.807 |
11 | 8.67 | 7.12 | 9.91 | 25.70 | 8.567 |
12 | 3.40 | 2.55 | 4.00 | 9.95 | 3.317 |
∑X | 59.42 | 49.51 | 82.51 | 191.44 | - |
x | 4.952(2) | 4.126(3) | 6.876(3) | 5.318 | -- |
∑X2 | 329.1142 | 242.8543 | 629.1065 | 1201.0748 | - |
离均差平方和:
总计: 1201.0748-(191.44)2/36×183。0394
饲料组间
单位组间
误差 183.0394-47.7877-102.9479=32.3038
注:以上分母12与3等为组内动物数。
表8.9 方差分析表
方差来源 | 自由度 | 离均差平方和 | 均 方 | F | F0.01(v1,v2) |
总计 | 35 | 183.0394 | |||
饲料组间 | 2 | 47.7877 | 23.8939 | 16.27 | 5.72 |
单位组间 | 11 | 102.9479 | 9.3589 | 6.37 | 3.18 |
误差 | 22 | 32.3038 | 1.4684 |
表8.8是按饲料和单位组两个方面分组的资料,设计这种实验时,先将条件基本相同的实验对象组成单位组,然后将一个单位组内的实验对象随机分配到各处理组(饲料组)中去,每组一个。如本例先挑选同窝、同性别、体重基本相等的大白鼠三头,组成一个单位组,共组成12个单位组,然后将每一单位组的三头白鼠随机分配到三个饲料组中去,这样,每个处理组的重复数就是单位组数。表8.8与表8.1资料不同的地方是,表8.1在同一批内的各数值,位置可任意调动,不影响分析的结果,而表8.8内,需移动数据时必须把该横行(第i个单位组)的所有数值同时移动,才使分析结果不受影响。