大脑机能一侧化的研究,过去主要采用临床观察法。但是在脑损伤时出现的机能障碍,远不是单因素的,所以在观察中看到的很多矛盾现象不好解释。最近二、三十年建立了一些新的技术方法以弥补观察法的不足。其中一些方法是无创性的,可以在正常人中进行,因而有关大脑两半球机能不对称研究的大量资料不仅来自病人,还来自正常人。
在正常被试中研究得较多的是视知觉和听知觉。利用速视器半边视野刺激术和同时双听技术,根据被试对到达左或右半球视或听知觉刺激的反应速度和准确性,证明了特定的半球对特定的知觉类型具有优势。例如以视知觉而言,根据许多作者的研究总结,右半球边视野优势(即刺激到达左半球)是各种言语材料;左半边视野优势(即刺激到达右半球)则为点的数目和位置、深度知觉/线条斜度、面部再认和形状再认等材料。以听知觉而言,右耳优势(即刺激到达左半球)为言语材料和人声再认;左耳优势(即刺激到达右半球)为曲调、环境声音、两个卡嗒声的阈限和音高模式。根据Bryden(1973)的看法,在正常人中重复上述一些研究结果有时是很困难的,因为待控制的因素很多。
使用一侧电休克的方法发现:一切语言信号的发现和理解都是左半球的功能,当左半球机能被电休克暂时抑制时,语言的知觉严重困难,言语活动下降、语言材料的记忆破坏,表现各种失语症状,对语音的选择性注意被破坏等等。在言语方面无论是元音还是辅音的选择性都变得很困难。当右半球机能暂停时被抑制时出现很多有趣的现象,例如信号源的空间定向力被破坏了,非言语信号的辨认(如物体发生的声音)遭到破坏,音乐旋律的知觉再认几乎不可能,言语交往中抗干扰能力下降,音调辨认不能,形象记忆破坏,不能辨认男人和女人的嗓音,也不能控制自己说话时的声调与重读音节。尽管如此,言语兴奋性却大大提高了。
使用这一方法还发现,两侧半球对人的情绪状态起着不同的作用。当右半球机能暂时被抑制时,情绪高涨、欣快、言语增多;而左半球机能暂时被抑制时,则情绪低落、沉默无语、自卑、自罪等。
用一侧麻痹法即Wada技术,使一侧半球暂时处于麻痹状态,发现大脑语言优势半球并不依赖于右手或左手,并发现音乐的知觉是右半球的功能,而意识活动是和语言优势半球联系着的,暂时阻断两半球的联系,可以引起情绪状态的变化等等。
比较左、右两半球脑电活动的情况也是研究大脑一侧化现象有希望的途径。不少研究已经表明:两半球对言语和非言语刺激的视、听诱发电位存在着差异,并且这种诱发电位大多是某种心理机能而不是刺激本身所引起。在与语言有关的实验中右半球比左半球呈现较少的诱发电位(较少的α波),而在与空间有关的实验中则表现相反的情况。这一现象虽然早在1959年就被发现,但直到七十年代才被重视起来,并用于研究两半球语言专门化和其他认识机能的问题中去。
上述左、右两半球机能专门化的研究结果究竟是量的,还是质的,还是量的质都存在差异,至今尚无一致的答案。Milner(1974)认为大量的神经科学和神经心理学的研究表明:在两个半球的相对应区域之间,既存在差异也存在相似,也就是两半球在心理机能上是互相补充的专门化。Benton则认为:优势表示两半球机能的不对称性,也就是两半球以不相等的程度提供各种特殊机能。理论上对某一特殊机能的不相等程度可能是绝对的(即一侧半球唯一地调节此机能),也可能是相对的(即一侧半球在调节此机能中较为重要)。绝对的不相等是罕见的,更为经常的关系是相对的不等。所以有些作者宁愿说一侧半球具有某一特殊机能而不说它是优势半球。Levy(1974)总结了机能不对称的证据后断定,人的大脑两半球存在于共生的关系中,活动的能力与动机是相互补充的。脑的某一侧能够完成和选择完成一定的认知作业,而脑的另一侧对这一作业感到困难或者不喜欢,或二者兼之。考虑到二套机能的性质,看来它们可能在逻辑上是不相容的。右半球综合空间,左半球分析时间。右半球知觉形状,左半球则知觉细节。右半球将感觉输入译成表象,左半球则译成言语描述。右半球缺乏语音的分析器,左半球则缺乏完形的综合器。所以谈到大脑机能不对称性的问题,应该更多地看到两侧半球相互补充、相互制约、相互代偿的一面。各种心理机能的完整反应都是两侧半球协同活动的结果。
在割裂脑病人身上所进行的实验,进一步证实了大脑两半球协同活动的重要性。由于裂脑人的每一侧半球都能独立地对外界刺激起反应,使人们对于左右半球的机能,特别是右半球的机能有了更深刻的认识。当裂脑病人用右手摸到一个物体时可以叫出它的名字,而左手摸则不能命名,但可以指出写着该物体名字的卡片。当把一个图形呈现于病人的左半视野时,也就是信息传至右半球时,病人可以用左手在屏幕下摸出图形上的物体,但叫不出它的名字。左手拿过的物体,右手不能再认。反之亦然。要求病人用左手书写是很难实现的,而用右手书写则毫无困难。另一实验中向病人的左半视野呈现一问号,向右半视野呈现一美元符号,问病人看见什么时,他回答说一个美元符号,要他用左手写出他看到了什么时,病人画出了一个问号。将10以内的算术题如3×4,10÷2,呈现于病人左半视野,他不能算出结果,甚至根本不理解数字的意义,说明主管计算的是左半球。当要求用左手临摹和绘画时病人毫无困难,但用右手很难完成这一任务。同样,要求病人用右手把一些部件拼成一个图形时也会出现困难。说明在空间知觉上右半球起主要作用。图27-1是要求一个裂脑病人用红白两色积木块拼成按图形所示的模型,这一实验是波士顿退伍军人医院的E.Kaplan做的。从图中可见,右手不能复制出所示模型,左手虽能复制出正方形的结构,但内容却异。也就是每只手的的失误频率相等,但失误类型却大不相同。结果显示大脑每侧半球都能产生一套单独的技术来完成这项任务。这一发现与两半球对各种机能有专门化区域的其他证据相一致。同时也显示无论那一侧半球都不能够单独地分析所示模型,它们必须协作,相互补充。
图27-1 裂脑病人按模型所示用左、右手所搭积木式样
近年来,我国医学界也开展了切断胼胝体的裂脑手术,在治疗顽固性癫痫方面获得了成功。病人术前所呈现的孤僻、暴躁、打人、毁物等异常行为明显改善。我国神经心理学家对这些裂脑病人进行了神经心理学的研究,发现病人的图形构筑能力发生障碍,获得了类似Kaplan的实验结果。过去认为:大脑顶叶的损害,特别是顶-枕联合区的损害能使病人图形构筑能力丧失,现在在病人顶叶和顶-枕联合区完好无损的情况下,切断胼胝体部和部分压部,阻断了左、右两半球顶叶和顶-枕联合区的纤维联系,同样发生图形构筑障碍的结果,说明完整的图形构筑能力是两半球该区域协同活动的结果。