(4)把握度的大小(即1-β),如把握度要求高,则样本量适当大些,反之,则可小些。
一般样本大小可用下列公式计算:
式中SE=标准误,P=某病的现患率,Q=1-P,N为样本数。
根据上述公式,可得到下列简便公式:
N=400×Q/P
式中N=样本数,P=预期现患率或感染率,Q=1-P。
本公式要求允许误差为0.1P,95%可信限水平t=2。样本的感染率P与总体感染率P之间有差异d。P-p=±d=±t×SE。
SE=d/t。0.05水平,自由度为无限大时,t约为2。
令d为=0.1P
若允许误差d=0.15P,则
N=178×Q/P
同理,d=0.2P时,N=100×Q/P
按此三公式,表28-1可作为调查样本大小之参考。
计算实例:某工厂有职工一万余人,现需估计全体职工携带乙型肝炎表面抗原情况。该地区乙型肝炎表面抗原携带率约10%。现采用抽样调查,要求允许误差为0.15P,计算需抽样调查人数。
d=0.15P
N=178×0.9/0.1=1602人
不同允许误差,调查人数不同。
表28-1是用上式计算出来的样本大小,可参考使用。但当流行率或阳性率明显小于10%,此式不适用。
表28-1 按不同预期阳性率和允许误差时的样本大小
预期阳性率 |
允许误差 | ||
0.1P | 0.15P | 0.2P | |
0.05 | 7600 | 3382 | 1900 |
0.075 | 4933 | 2193 | 1328 |
0.10 | 3600 | 1602 | 900 |
0.15 | 2264 | 1009 | 566 |
0.20 | 1600 | 712 | 400 |
0.25 | 1200 | 533 | 300 |
0.30 | 930 | 415 | 233 |
0.35 | 743 | 330 | 186 |
0.40 | 600 | 267 | 150 |